

Investigation of Static Strength Variability between Composite and **Metallic with respect to Overload Factors**

JAMS 2021 Technical Review September 30th, 2021

Waruna Seneviratne, John Tomblin, and Supun Kariyawasam

WICHITA STATE

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Research Team:

NIAR

- John Tomblin, PhD
- Supun Kariyawasam

FAA

- Larry Ilcewicz, PhD
- Lynn Pham

Background & Motivation

- During service, composite structures absorb atmospheric moisture and rate of moisture absorption is accelerated by the elevated temperature.
- It was demonstrated that static strength behavior is affected by the environmental conditions; however, the fatigue behavior is relatively insensitive.
- In addition to the environmental factors, scatter factors or material variability are also acute factors.
- Therefore, during the substantiation process of static test articles, DUL are increased in a manner similar to the load enhancement factor (LEF) approach to compensate for the environmental effects and material scatter; However, this procedure varies from company to company.
- Despite the many advantages, composite structural certification becomes challenging due to the lack of experience in large-scale structures, complex interactive failure mechanisms, sensitivity to temperature and moisture, and scatter in the data.
- Static overload factor for composite structural substantial assumes that the strength variability in composites is significantly higher than that for metals, and the effects of humidity and temperature on metals is insignificant.
- Therefore, overly conservative overload factors applied during composite static strength substantiation.

The overall objective of this research is to investigate static strength variability between composites and metallic with respect to overload factors that are applied during static strength substantiation of composite structures and develop guidelines.

- Task 1: Literature Survey
 - Composite Data
 - Metallic Data
 - Industry Standards
- Task 2: Analysis and Comparison
- Task 3: Guidelines for Development and Application of Static Overload Factor
- Task 4: Validation

Validation

Literature Review

\$ \$ \$

alysis

S (infrared)

Guidance for Application of SOF

3

Roadmap of Project – Technical Approach

<u>Task 1</u> Literature Survey

- Conduct literature survey on static strength variability under extreme environmental conditions for each level of building block testing:
 - 1. Composite Data
 - 2. Metallic Data
- Collect available various industry standards for full scale substantiation

<u>Task 2</u> Data Analysis and Comparison

 Environmental Compensation Factor (ECF)

 $ECF = \frac{\sigma_{RTA}}{\sigma_{Min \, (Critical \, Env. condition)}}$

• Scatter Factor (SF)

 $SF = \frac{\sigma_{\text{Mean (Env)}}}{\sigma_{\text{B-Basis (Env)}}}$

• Static Overload Factors (SOF)

Task 3

Guidelines for Development and Application of Static Overload Factor

- Analyzed data and industry standards are evaluated to develop:
 - Guidance for SOF calculations
 - Guidance for SOF applications

Full-Scale Static Test

Note: **strain-based approach relies heavily on assumption that the FEM is so good that we could get one-to-one correlation coupled with all BB testing to go with all predicted failure modes regardless of whether we could duplicate such behavior at coupon/component level

Environmental degradation is accounted for

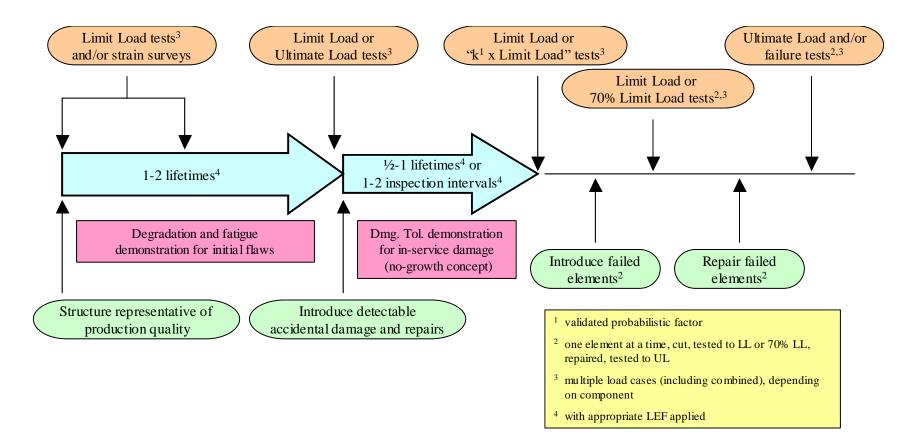
Option 1 RTA test to DUL x SOF

Option 2 RTA test to DUL x SF and strain correlation with ECF**

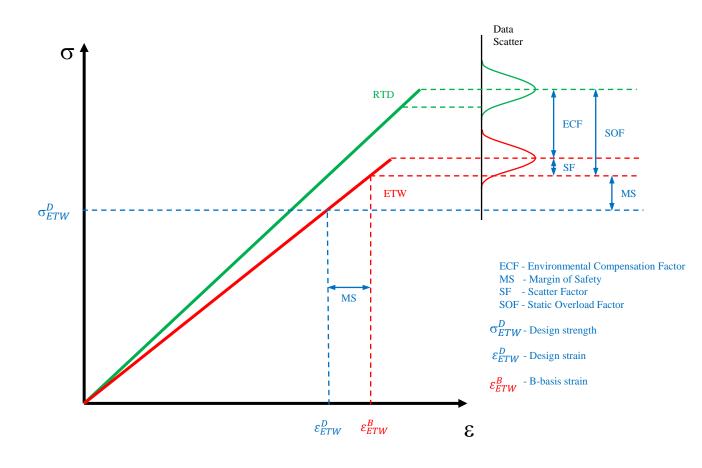
Option 3 ETW test to DUL x SF

For ETW full-scale static test:

 $\varepsilon_{ETW}^{SF} < \varepsilon_{ETW}^{B}$


For RTA full-scale test:

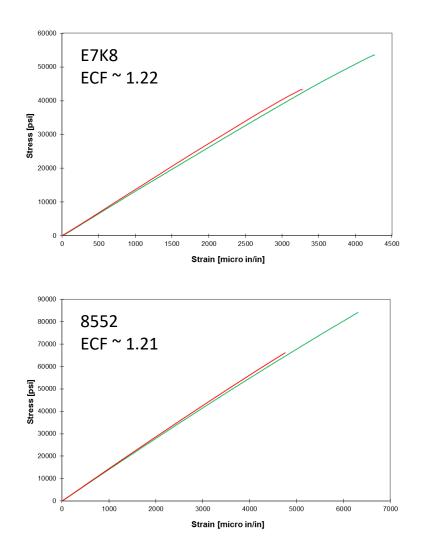
 $\varepsilon_{RTA}^{SOF} < \varepsilon_{ETW}^{B}$


Full-Scale Test Sequence

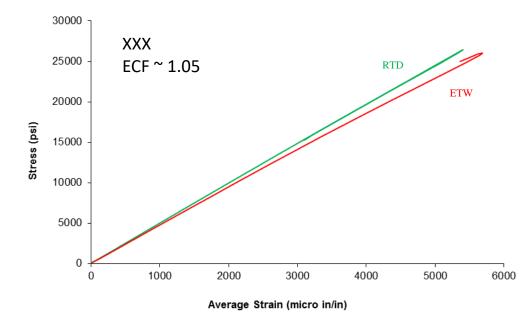
Composite Materials Handbook (CMH-17)

Development of Static Overload Factor (SOF)

<u>Assume</u>


- 1. Composite strength variability is independent of environment.
- 2. Linear stress-strain response for RTA and critical environmental condition
- 3. Critical failure mode is independent of environment and can be predicted

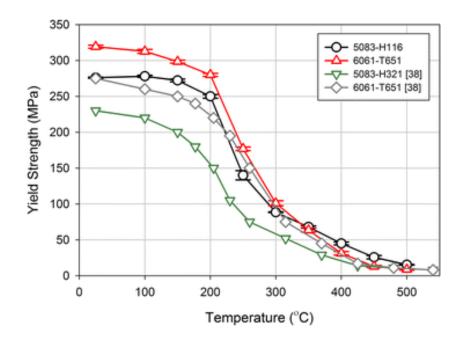
 $\frac{\text{Static Overload Factor}}{\text{SOF} = \text{ECF x SF}}$

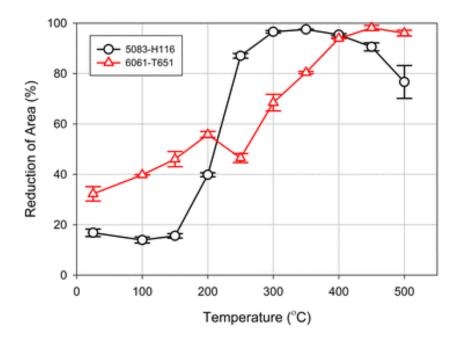


Compression After Impact

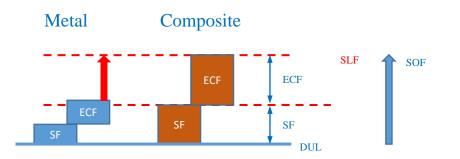
Example RTA & ETW Curves

• Some new composite material systems have shown significantly low ECFs

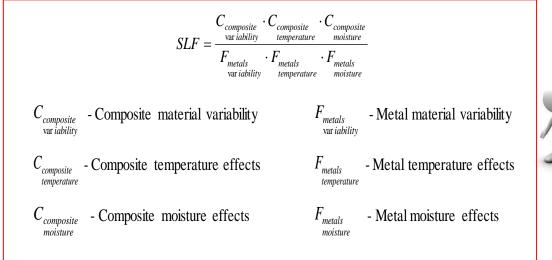



- For certain failure modes and design details, ETW may not be the critical environmental condition
- Other failure modes must also be interrogated

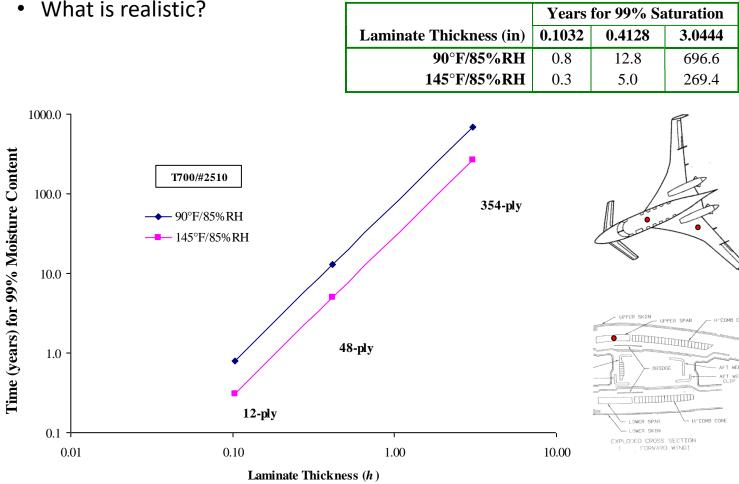
ECF for Metals



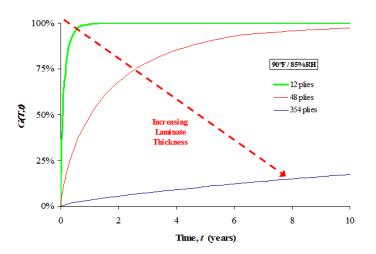
Ref: Kaufman JG (ed) (2000) Introduction to aluminum alloys and tempers. ASM International, Metals Park, OH Allen B (2012) Thermomechanical behavior and creep response of marine-grade aluminum alloys. Thesis, Virginia Polytechnic Institute & State University


SOF for Hybrid Structures

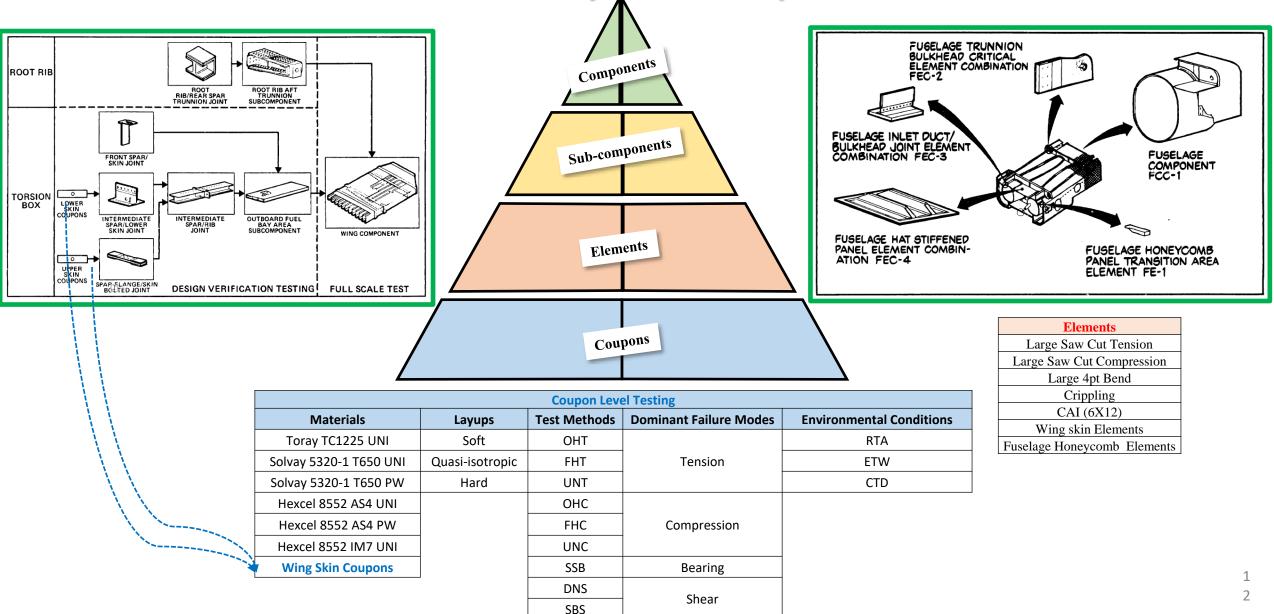
- If Option 2 is employed, hybrid test must be conducted to DUL x SF_{Composites}
- When employing Option 2, strain correlation for both metals and composites must be conducted separately.
- Option 3 may be employed at component or subcomponent levels to address critical environmental effects for composites


- Data scatter in composite is higher than metals
 - \rightarrow SF_{Metals} < SF_{Composites}
- ECF_{Metals} only includes temperature effects and ECF_{Metals} < ECF_{Composites}

• Static Load Factor

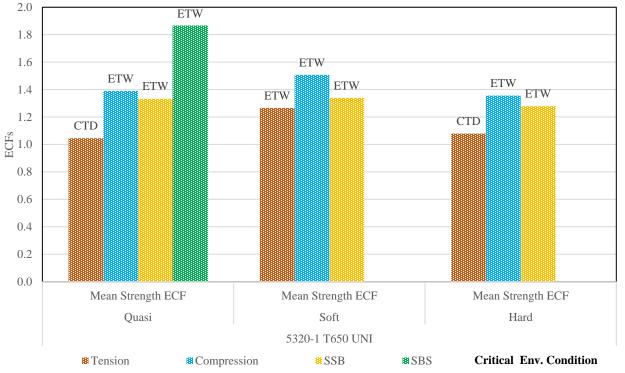

• What is realistic?

 Effects of thickness on the moisture equilibrium can be used to generate customized (lower) ECFs for thick structures


NIAR

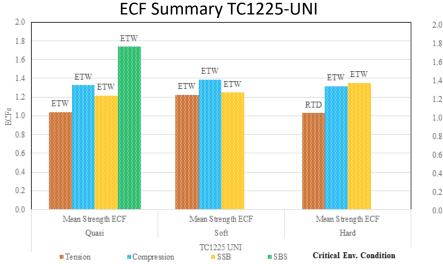
WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

Literature Survey of Composite Data

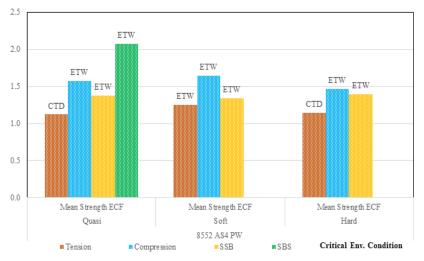


Coupon Level ECF Analysis (5320-1 T650-UNI)

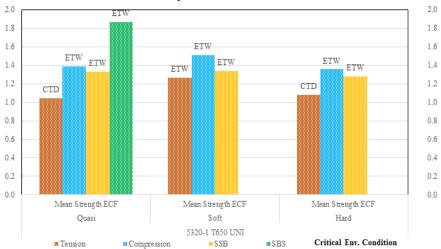
				La	Critical						
Material	Laminate	Test Method	Env. Conditions °F	# of Specimens-Batches	Mean [ksi]	ASAP B- Basis	3-Batch CV	Condition			
			CTD (-65)	21 from 3	47.105		5.534				
		OHT	RTD (70)	21 from 3	49.601		5.909	CTD			
			ETW (250)	21 from 3	53.675	47.505	6.032				
		OHC	RTD (70)	21 from 3	50.894	46.119	6	ETW			
		one	ETW (250)	21 from 3	39.199	34.424	6	EI (
			CTD (-65)	21 from 3	56.416	50.344	6	~			
		FHT	RTD (70)	21 from 3	57.962	51.89	6.143	CTD			
			ETW (250)	21 from 3	60.048	53.976	6				
		FHC	RTD (70)	21 from 3	81.56	73.794	6.299	ETW			
			ETW (250)	21 from 3	55.757	47.991	6.644	510			
	25/50/25 [45/0/-		CTD (-65)	21 from 3	92.513	82.306	6	CTD			
	45/90]2S	UNT	RTD (70)	21 from 3	97.622	87.415	6	CTD			
			ETW (250)	21 from 3	103.351	93.145	6				
		UNC	RTD (70)	21 from 3	96.628	82.369	7.822	ETW			
			ETW (250)	21 from 3	68.635	60.866	6				
		SSB 2%	RTD (70)	21 from 3	136.627	123.999	6	ETW			
			ETW (250)	21 from 3	102.565	89.937	6				
		SSB Initial	RTD (70)	21 from 3	135.155	122.477	6.022	ETW			
			ETW (250)	21 from 3	101.299	88.8	6.041				
		SSB Ultimate	RTD (70)	21 from 3	151.576	137.05	6.341	ETW			
			ETW (250)	21 from 3	113.84	99.314	6				
		SBS	RTD (70)	21 from 3	13.71	10.649	6.205	ETW			
			ETW (250)	21 from 3	7.356		5.199				
	10/80/10 (45/-45/0/45/-		CTD (-65)	21 from 3	44.056	39.018	6				
		ОНТ	RTD (70)	21 from 3	42.535		6	ETW			
			ETW (250)	21 from 3	35.238	31.209	6				
			RTD (70)	21 from 3	44.484	40.343	6	ETW			
			ETW (250)	21 from 3	32.389	28.248	6				
		FHT FHC	CTD (-65)	21 from 3	50.295	46.363	6				
			RTD (70)	21 from 3	49.558	44.626	6	ETW			
5320-1 T650			ETW (250)	21 from 3	39.898	34.966	6				
UNI			RTD (70)	21 from 3	61.954	56.352	6	ETW			
	45/90/45/-45/45/-45]S		ETW (250)	21 from 3	41.262	35.66	6				
		UNT	CTD (-65)	21 from 3	71.302	64.693	6	ETW			
			RTD (70)	21 from 3	67.633	61.023	6				
			ETW (250)	21 from 3	50.13	43.52	6				
			RTD (70)	21 from 3	72.33	63.044	6.737	ETW			
			ETW (250)	21 from 3	43.957	38.76	6.204				
		SSB 2%	RTD (70)	21 from 3	134.738	122.062	6	ETW			
			ETW (250)	21 from 3	101.082	88.406	6				
		SSB Ultimate	RTD (70)	21 from 3	161.861	146.052	6.359	ETW			
			ETW (250)	21 from 3	120.367	104.558	6.046				
			CTD (-65)	21 from 3	65.202	56.773	7.373				
		OHT	RTD (70)	21 from 3	70.597	62.169	6.51	CTD			
			ETW (250)	21 from 3	86.585	78.192	6				
		OHC	RTD (70)	21 from 3	66.016	59.676	6	ETW			
			ETW (250)	21 from 3	52.759	46.394	6				
			CTD (-65)	21 from 3	70.552		5.417				
		FHT	RTD (70)	21 from 3	77.031	68.396	6.188	CTD			
			ETW (250)	21 from 3	83.001	74.401	6				
		FHC	RTD (70)	21 from 3	94.14	85.188	6	ETW			
	50/40/10 [0/45/90/0/-		ETW (250)	21 from 3	71.163	62.21	6.133				
	45/0/45/0/-45]S		CTD (-65)	21 from 3	144.363	127.579	6.344	~			
	1	UNT	RTD (70)	21 from 3	153.345	136.561	6.547	CTD			
			ETW (250)	21 from 3	164.899	148.115	6				
		UNC	RTD (70)	21 from 3	129.217	117.435	6	ETW			
		0110	ETW (250)	21 from 3	86.522	74.689	6				
		SSB 2%	RTD (70)	21 from 3	137.336	124.107	6.084	ETW			
		555 270	ETW (250)	21 from 3	102.704	89.422	6.315				
		SSB Initial	RTD (70)	21 from 3	129.575	116.805	6	ETW			
		55D maai	ETW (250)	21 from 3	100.496	87.46	6.049				
		SSB Ultimate	RTD (70)	21 from 3	145.805	131.62	6	ETW			
		555 Ounate	ETW (250)	21 from 3	120.521	106.279	6	1.1 W			


			Tension	Compression	Bearing	Shear
0.00	Quasi	Mean Strength ECF	1.045	1.390	1.333	1.864
Qua		Critical Condition	CTD	ETW	ETW	ETW
Set	Soft	Mean Strength ECF	1.266	1.507	1.339	-
301		Critical Condition	ETW	ETW	ETW	-
Har	d	Mean Strength ECF	1.079	1.356	1.279	-
Па	u	Critical Condition	CTD	ETW	ETW	-

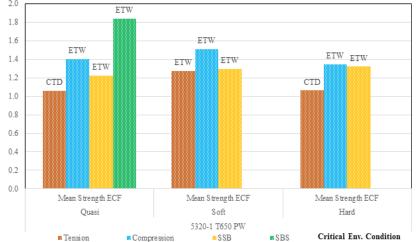
ECF Summary 5320-1 T650-UNI



Coupon Level ECF Summaries



ECF Summary 8552 AS4-UNI 2.0 ETW 1.8 1.6 ETW ETW ETW ETW 1.4 ETW 1.2 CTD CTD 1.0 0.8 0.6 0.4 0.2 0.0 Mean Strength ECF Mean Strength ECF Mean Strength ECF Quasi Soft Hard 8552 AS4 UNI Critical Env. Condition R Tension Compression **≋**SSB ∎SBS


ECF Summary 8552 AS4-PW

ECF Summary 5320-1 T650-UNI

ECF Summary 5320-1 T650-PW

ECF Summary 8552 IM7-UNI

Critical

Conditio

n

ETW

ECF

M/min(M)

3.211

Mean Load %

DUL

244

76

Overall Coupon Level ECF Summary and Comparison to Coupons Extracted from Wing Skin

		Tension	Compression	SSB	SBS
Quasi	Mean Strength ECF	1.057	1.403	1.224	1.840
Soft	Mean Strength ECF	1.273	1.510	1.292	-
Hard	Mean Strength ECF	1.063	1.344	1.319	-

2.0				25				
		Tension	Compression SSB SBS	3.5				3.211
1.8				3.0				
1.6								
1.4				2.5				
1.2 -				-				
ECFs 1.0				<u>ي</u> ج				
Щ 0.8				2.0 EAC EAC EAC EAC EAC EAC EAC EAC EAC EAC	1.423		1.523	
0.6				1.5		1.126		
0.4				1.0				
0.2				0.5				
0.0				0.5				
	Mean Strength ECF	Mean Strength ECF	Mean Strength ECF	0.0				
	Quasi	Soft	Hard		ALL Properties	Fiber Dominant Properties	Resin Dominant Properties	Tension/Compress
	Averag	e Mean Strength of All Material	Systems			Laminate Coupons		Wing Skin Coupo

Mean Strength ECF Average of All (MS, Layup)

Environmental

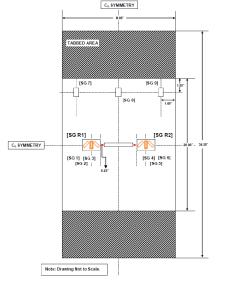
Condition

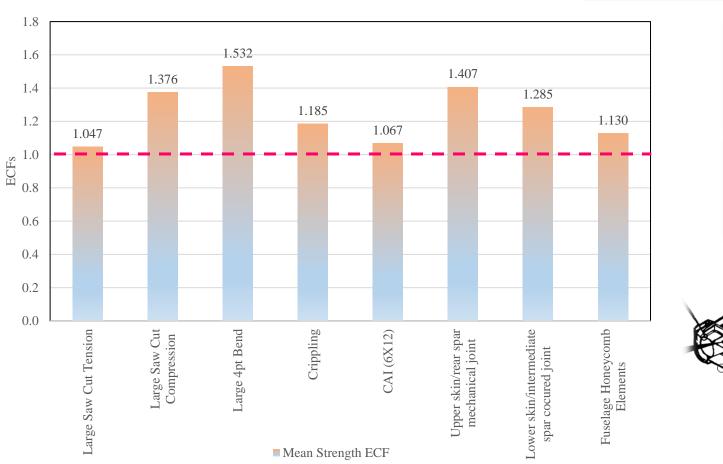
RTA

ETW

Test Method

Wing Skin


Tension/Compression


WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

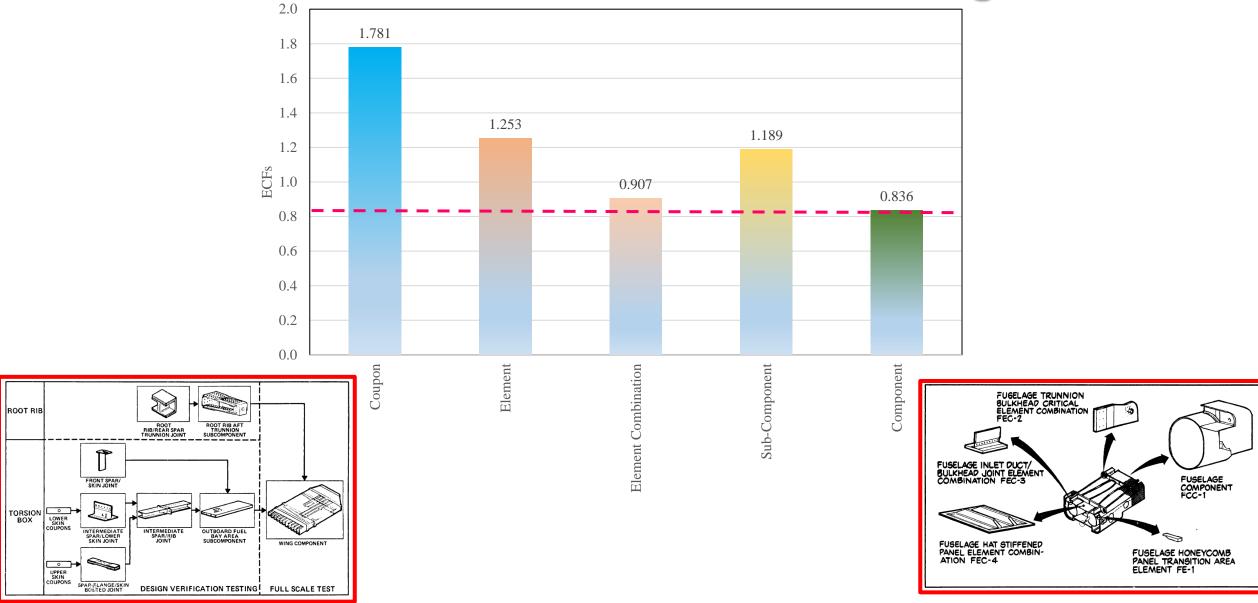
Element Level ECF Analysis

Test Method	Large Saw Cut Tension	Large Saw Cut Compression	Large 4pt Bend	Crippling	CAI (6X12)	Upper skin/rear spar mechanical joint	Lower skin/intermediate spar cocured joint	Fuselage Honeycomb Elements
ECF M/min(M)	1.047	1.376	1.532	1.185	1.067	1.407	1.285	1.130
C. SYMMETRY							Overall Mean	1.253

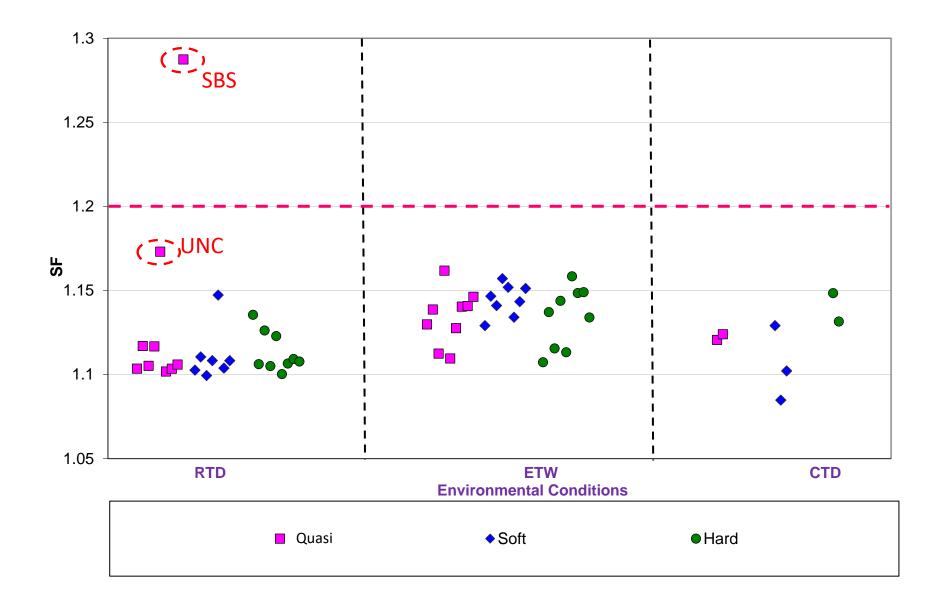
FUGELAGE HONEYCOMB PANEL TRANSITION AREA ELEMENT FE-1

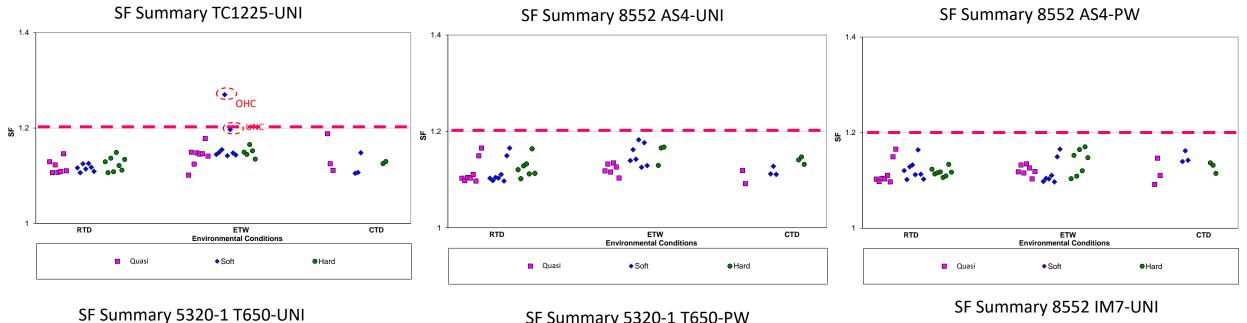
					Failure L	ooda 0/		3.5		3.211		ROOT BIB		+		
					Fanure L DU								ROOT RIB/REAR SPAF TRUNNION JOIN			
Complexity Level	Name	Description	Loading	Failure Modes	RTA	ETW	ECF	3.0					1			
Coupon	Coupon	Wing skin coupon specimens	Tension/Compression	Net section at fastener hole	244	76	3.211	2.5				TORSION BOX	FRONT SPAR/ SKIN JOINT			
Flowert	Element-1	Upper skin/Rear spar mechanical joint	Compression load transfer	Fastener hole	173	123	1.407	2.0				+	INTERMEDIATE SPAR/LOWER SKIN JOINT JOINT	E OUTBOARD FUEL BAY AREA SUBCOMPONENT WIN	IG COMPONENT	
Element	Element-2	Lower skin/Intermediate spar cocured joint	Combine shear/ Fuel pressure/ Chordwise loading	Spar web failure/ Fuel drain hole	186	160	1.163				1 407	UPPER SKIN COUPONS	SPAR-FLANGE/SKIN BOLTE JOINT DESIGN VER		SCALE TEST	
Element Combination	Element Combination	Intermediate spar/Pylon rib transfer joint	Load transfer between spar and rib	Cocured joint/ Upper skin	128	129	0.992	1.5			1.407	1.163	0.000	1.284	1.094	
Sub-	Sub Component-1	Three bay box beam	All the above	Upper skin/ Lower skin/ Cocured joint	131	102	1.284	1.0	-				0.992			0.968
Component	Sub Component-2	Highly loaded root rib/atf	All the above	Rib web	197	180	1.094	0.5							_	
Component	Component	Wing component	all the above	Cocured joint/ Upper skin	122	126	0.968	0.0								
										Coupon	Element-1	Element-2	Element Combination	Sub Component-1	Sub Component-2	Component

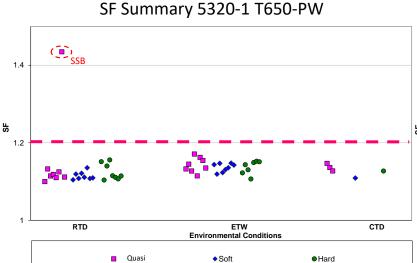
WICHITA STATE UNIVERSITY

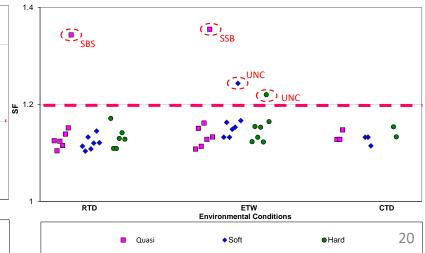

NATIONAL INSTITUTE FOR AVIATION RESEARCH

NIAR


ECF Summary for each Level of Building Block


Coupon Level Scatter Factor Analysis (5320-1 T650-UNI)


19


Coupon Level SF Summaries

1.3 (1) SBS 1.25 1.2 (ЗF 1.15 1.1 1.05 RTD ETW CTD **Environmental Conditions** Quasi Soft Hard

SF Summary 8552 IM7-UNI


Looking Forward / Future Work

- Benefit to Aviation
 - Generating guidance materials for development and application of Static Overload Factors

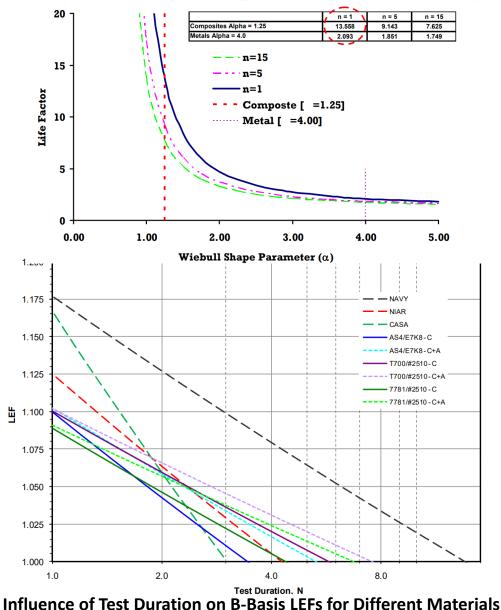
300

Yield Strength (MPa)

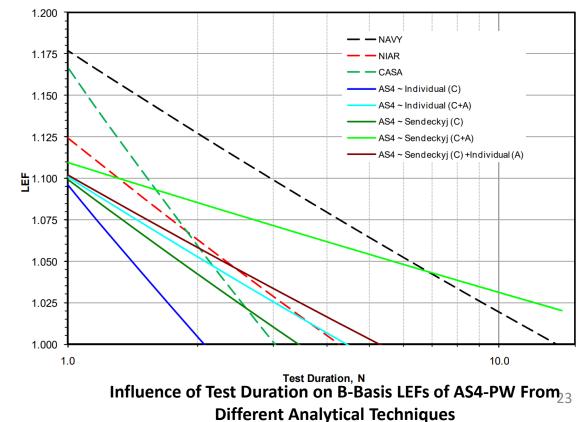
- Better understanding of SOF is resulted in efficient composite structures
- Next Steps:
 - Continue literature survey on:
 - Metallic compensation factors used during substantiation process
 - Metallic and Composite industry standards
 - Guidance for SOF calculation and application

-O- 5083-H116

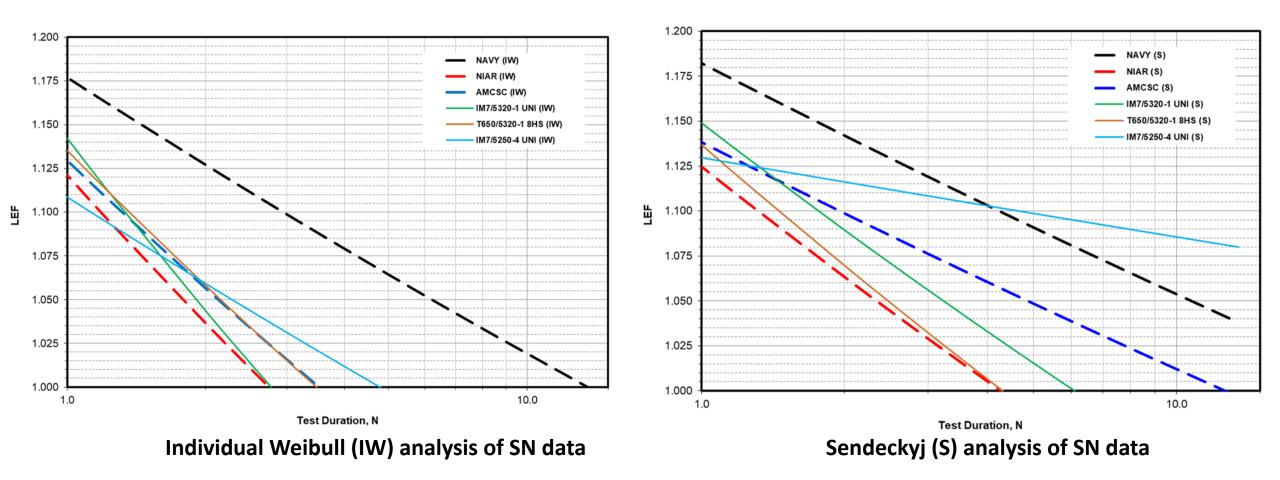
- 6061-T651


Contact & References

Contact: Waruna Seneviratne (waruna@niar.wichita.edu)


- 1. Seneviratne, W. P., & Tomblin, J. S. (2010). Environmental compensation factor influence on composite design and certification. In FAA JAMS 2010 Technical Review Meeting.
- 2. Whitehead, R. S., Kan, H. P., Cordero, R., & Saether, E. S. (1986). Certification testing methodology for composite structures. *Volumes I and II, Report No.* NADC-87042-60 (DOT/FAA/CT-86-39).
- 3. "Static Strength Substantiation of Composite Airplane Structure," PS-ACE100-2001-006, December, 2001.
- 4. Wanhill, R. J. H. (2017). Fatigue requirements for aircraft structures. In Aerospace materials and material technologies (pp. 331-352). Springer, Singapore.
- 5. larkson, E. (2020). Medium Toughness PAEK thermoplastics Toray (Formerly TenCate) Cetex[®] TC1225 (LM PAEK) T700GC 12K T1E Unidirectional Tape 145 gsm 34% RC Material Allowables Statistical Analysis Report.
- Clarkson, E. Hexcel 8552 AS4 Unidirectional Prepreg Qualification Statistical Analysis Report. Marlett, K., Ng, Y., & Tomblin, J. (2011). Hexcel 8552S AS4 plain weave fabric prepreg 193 gsm & 38% RC qualification material property data report. National Institute for Aviation Research, Wichita State University, Report No: CAM-RP-20110-006 Revision N/C.
- 7. Marlett, K., Ng, Y., & Tomblin, J. (2011). Hexcel 8552S AS4 plain weave fabric prepreg 193 gsm & 38% RC qualification material property data report. National Institute for Aviation Research, Wichita State University, Report No: CAM-RP-20110-006 Revision N/C.
- 8. Clarkson, E. (2017). Solvay Cytec Cycom 5320-1 T650 Unitape Gr 145 Qualification Statistical Analysis Report.
- 9. Clarkson, E. (2015). Cytec Cycom 5320-1 T650 3k-PW Fabric Material Allowables Statistical Analysis Report. NCAMP Project Number NPN071001. NCAMP Report Number: NCP-RP-2012-023 Ver NC.
- 10. Marlett, K., Ng, Y., & Tomblin, J. (2011). Hexcel 8552 IM7 unidirectional prepreg 190 gsm & 35% RC qualification material property data report. National Center for Advanced Materials Performance, Wichita, Kansas. Test Report CAM-RP-2009-015, Rev. A, 1-238
- 11. Zanial, M. M. (2014). *Effects of large damage on residual strength of carbon fiber reinforced composite laminates* (Doctoral dissertation, Wichita State University).
- 12. Tomblin, J., Salah, L., Davies, C., & Pham, L. (2012, April). CACRC depot bonded repair investigation–round robin testing. In FAA JOINT ADVANCED MATERIALS & Structures (JAMS) Center of Excellence 8th Annual Technical Review Meeting, Baltimore, MD.
- 13. Whitehead, R. S., Kinslow, R. W., & Deo, R. B. (1979). Composite Wing Fuselage Program. *Contract F33615-79-C-3203, Interim Reports*, 1-11.
- 14. Mullineaux, J. L., Whitehead, R. S., & Ritchie, G. L. (1983, June). Full Scale Testing of Composite Wing Structure. In 7th DOD/NASA Conference on Fibrous Composites in Structural Design, Denver, Colorado (June 1985)..
- 15. Kaufman, J. G. (2000). Applications for aluminum alloys and tempers. *Introduction to Aluminum Alloys and Tempers; ASM International: Materials Park, OH, USA*, 87-118.
- 16. Allen B (2012) Thermomechanical behavior and creep response of marine-grade aluminum alloys. Thesis, Virginia Polytechnic Institute & State University

Fatigue LEF Approach Similar to SOF (FAA)



Analysis Method	α_L	N_F
Individual Weibull (C)	4.056	2.070
Individual Weibull (C+A)	2.082	4.418
Sendeckyj (C)	2.475	3.431
Sendeckyj (C+A)	1.021	26.296
Sendeckyj (C)+Individual Weibull (A)	1.880	5.267

Fatigue LEF Approach Similar to SOF (MASC)

Fatigue Life Weibull Shape Parameter

Metallic Shape Parameters for Fatigue Data

25