



# Nanomechanical Characterization of Adhesive Bondlines

Rita Olander, Brian Flinn University of Washington Materials Science & Engineering, Seattle, WA

JAMS 2021 Technical Review August 23-27, 2021

# Nanomechanical Characterization of Adhesive Bondlines

- Principal Investigators & Researchers
  - Brian D. Flinn (PI)
  - Rita Olander
  - Alex Gray
- FAA Technical Monitor
  - Ahmet Oztekin
- Other FAA Personnel Involved
  - Larry Ilcewicz, Cindy Ashforth
- Industry Participation
  - The Boeing Company







# Outline

#### Background

- Adhesive Aging Effects
- Bondline Regions within Cobond
- Interphase Characterization
- Nanoindentation Methodology
- Nanoindentation Characterization
- Value to Industry
- Project Tasks
- Nanomechanical Preliminary Study Overview
- Nanomechanical Characterization of Aged Bondlines
  - Bonding Systems
  - Approach
- Acknowledgements







### Background Adhesive Aging Effects

- Composite joints undergo thousands of service hours under environmental conditions (ie. hot-wet, fuel, hydraulic fluid, etc. exposure)
  - − Diffusion of moisture  $\rightarrow$  hydothermal aging
  - Cyclic loading  $\rightarrow$  ratchet and fatigue
  - Oxygen-rich and elevated temperatures  $\rightarrow$  thermo-oxidative aging
- many unknowns with the aging differences between the adherend and adhesive
  - physical and chemical aging
    - Changes in mass density and toughness
    - Plasticize
    - Tg changes
      - Moisture adsorption, cross-link density, free volume
  - Do regions within the bondline age differently?
    - > Are bond degrading, and if so are they degrading at different rates?







### **Background** Bondline Regions within Cobond



Secondary bonding between cured adherend 2 and adhesive







### **Background** Interphase Characterization

- Bonding creates a mixing zone, or interphase, between two materials
  - Interphase can effect bond strength and durability
  - Interphase region involving an uncured adherend is significantly larger than other substrates (e.g. metal)
  - Factors influencing interphase development not fully understood
- The micron-scale regions within bondlines are difficult to characterize due to their size
  - Complex microstructures and chemistries different from bulk materials





### Background Aging Effects



Secondary bonding between cured adherend 2 and adhesive

- Will the interphase age differently compared to the bulk adhesive or bulk
- Will failure mode change? If so, is it changing to an unacceptable failure mode?

Can nanomechanical characterization detect changes?







# Background

#### Nanoindentation Methodology

- Equipment: Hysitron TriboIndenter 980
  - Diamond tip with Berkovich geometry
  - Indent surface from tens of nanometers to several micrometers deep
- Operated in load-controlled mode
- Load and displacement measured and graphed as indenter penetrates surface
- Hardness:

$$A_c = k_1 h_c^2 + k_2 h_c$$

 $A_c$  = contact area of the indenter tip,  $k_1$  and  $k_2$  = fitted constants, P = the maximum load

 $H = \frac{P}{A_c}$ 

- Reduced modulus:
- Tangent of the unloading curve at instant point of unloading

$$E_r = \frac{S\sqrt{\pi}}{2\sqrt{A}} \qquad \qquad \frac{1}{E_r} = \frac{1-v^2}{E}_{sample} + \frac{1-v^2}{E}_{indenter}$$

S= stiffness of unloading curve, A=projected contact area, v = Poisson's ratio











Force-Displacement curve featuring:

- loading (1)
- holding (2)
- unloading (3)
- unloading tangent used to find *Er* (4)



### **Background** Nanoindentation Characterization

Extreme Property Mapping (XPM)

- Quick nanoindentations performed within specified array
- H and Er measured at every indent
- Mapped on X-Y graph using color gradients to illustrate changes in mechanical properties







### **Background** Nanoindentation Characterization



Heated stage attachment of Hysitron TriboIndenter 980

### CECAM

#### NanoDMA

- Nanodynamic mechanical analysis on a submicron scale
  - $\rightarrow$  Oscillating force applied to nanoindenter tip
  - $\rightarrow$  sinusoidal stress is applied
  - $\rightarrow$  strain of the material is measured
  - → Measures viscoelastic properties of the material Tan(delta) =  $\frac{E''}{E'}$

E" = loss modulus (measuring viscous response)E' = storage modulus (measuring elastic response)Independent of indenter tip to sample contact area

- Heated stage used to vary temperature
  - ightarrow show variations in the moduli
  - → Determine the glass transition temperature (Tg) range





# Value to Industry

- Potentially reduce representative testing to support qualification for existing or new bonding systems
  - Characterize interphases within systems and how they relate to macro mechanical performance
    - Bulk properties vs. Interphase properties
    - Evaluate effect of toughening particles, scrim, additives, etc.
    - Evaluate lifecycle health of bonding systems
  - Enable new systems development through new screening tests and creating a database for model based engineering (MBE)
- Understand fundamental science of matrix/adhesive interactions







## Tasks

- 1. Understand the long term effects of moisture saturation and aging on the various regions of bondlines (structure and properties)
- 2. Understand the influence of additives, tougheners, and scrim found in adhesives (and not matrix resins) on structure and properties of aged bondlines
- 3. Identify potential long term aging model relationships between matrix resins and adhesives
- 4. Identify and develop accelerated aging protocols that mimic the effect of long term service (if time and budget permits)







#### **Bonding Systems**

|                     | Bond Type         | Adherend                                              | Surface Preparation<br>(cured adherend only)                                 | Adhesive                                                                       |
|---------------------|-------------------|-------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Bonding<br>System 1 | Cobond            | BMS8-276<br>Toray T800S/3900<br>resin <sup>[F1]</sup> | BMS8-308 Ty IV<br>Diatex 1500EV6 woven<br>polyester peel ply <sup>[F2]</sup> | BMS5-160, Ty I<br>3M AF 555<br>polyester supported <sup>[F3]</sup>             |
| Bonding<br>System 2 | Cobond            | BMS8-276<br>Toray T800S/3900<br>resin <sup>[F1]</sup> | BMS8-308 Ty IV<br>Diatex 1500EV6 woven<br>polyester peel ply <sup>[F2]</sup> | BMS5-160 Ty II<br>Solvay FM® 309-1<br>Knit or mat carrier <sup>[F3]</sup>      |
| Bonding<br>System 3 | Secondary<br>Bond | BMS8-276<br>Toray T800S/3900<br>resin <sup>[F1]</sup> | BMS8-308 Ty IV<br>Diatex 1500EV6 woven<br>polyester peel ply <sup>[F2]</sup> | BMS5-154<br>Cytec Metlbond® 1515-4<br>modified epoxy supported <sup>[F3]</sup> |

[F1] 350°F cured carbon fiber reinforced polymer matrix

[F2] Peel ply removed just prior to bonding

[F3] 350°F cured film adhesive







Bonding System 1 - AF555/3900 Cobond

- XPM arrays performed parallel to the bondline and normal to adhesive/cured adherend interphase
- Reduced modulus maps show distribution of properties (red = high blue = low)



- Matrix resin has highest values while adhesive has much lower values
- Interphase mixing zone can be observed
  - Approximately 40-50 μm thick but will vary along bondline (~30% of bondline)
- Well defined transition seen between matrix resin and adhesive







Bonding System 1 - AF555/3900 Cobond

#### Adhesive Property Mapping Trends



Bonding System 1 - AF555/3900 Cobond

#### Adhesive Property Mapping Trends



Location of nanoDMA measurements

3M Technical Data Sheet – 170°C Dry Tg (DMA Tan delta peak) from neat adhesive, autoclave cured at 355°F for 120 min, 15-20 psi







#### Nanomechanical Characterization of Aged Bondlines Bonding Systems

|                                                                                     | Bond                                          |                                                   | Surface Preparation                                |                                                     |
|-------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
|                                                                                     | Туре                                          | Adherend <sup>[F1]</sup>                          | (cured adherend only) [F2]                         | Adhesive <sup>[F3]</sup>                            |
| "Pristine"/Baseline                                                                 | Secondary                                     | Toray T800S/3900                                  | Diatex 1500EV6 woven                               | Solvay Metlbond® 1515-4                             |
| DCB Sample                                                                          | Bond                                          | resin                                             | polyester peel ply                                 | modified epoxy supported                            |
| "Pristine"/Baseline                                                                 | Cobond                                        | Toray T800S/3900                                  | Precision Fabric Group                             | Solvay Metlbond® 1515-3                             |
| DCB Sample                                                                          |                                               | resin                                             | 60001 polyester peel ply                           | modified epoxy supported                            |
| Lab Ambient 2008                                                                    | Secondary                                     | Toray T800S/3900                                  | Diatex 1500EV6 woven                               | Solvay Metlbond® 1515-3                             |
| "Aged" DCB Sample                                                                   | Bond                                          | resin                                             | polyester peel ply                                 | modified epoxy supported                            |
| 2012<br>Environmentally<br>Aged Spare Stringer                                      | Cobond                                        | Toray T800S/3900<br>resin<br>Toray FGF-108<br>29M | Precision Fabric Group<br>60001 polyester peel ply | Solvay Metlbond® 1515-3<br>modified epoxy supported |
| 777-200 HSTAB                                                                       | Cobond                                        | Toray T800S/3900                                  | Precision Fabric Group                             | Solvay Metlbond® 1515-3                             |
| Stringer                                                                            |                                               | resin                                             | 60001 polyester peel ply                           | modified epoxy supported                            |
| (46,525 hours and 19,001 cycles)                                                    |                                               | Toray FGF-108<br>29M                              |                                                    |                                                     |
| [F1] 350°F cured carbon f<br>[F2] Peel ply removed jus<br>[F3] 350°F cured film adh | iber reinforced<br>t prior to bondi<br>lesive | polymer matrix<br>ng                              |                                                    |                                                     |







#### Nanomechanical Characterization of Aged Bondlines 777-200 HSTAB Stringers



#### Nanomechanical Characterization of Aged Bondlines Approach

- Investigate surface preparation/matrix interphase and adhesive/adherend interphase on
  - 1. pristine, unaged bonds
  - 2. in-service aged structure samples
  - 3. artificially aged bonds using common industry accelerated aging methods (if time/budget permits)

| Adhesive Characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evaluate Bond Adhesion, Strength & Durability                                                                                                                                                                        |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| <ul> <li>Nanomechanical Property Testing <ul> <li>NanoDynamic Mechanical Analysis (DMA)</li> <li>Nanoindentation (modulus and hardness)</li> </ul> </li> <li>MacroDMA <ul> <li>Thermomechanical analysis (TMA)</li> </ul> </li> <li>Differential scanning calorimetry (DSC)</li> <li>Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS)</li> <li>Electron spectroscopy for chemical analysis (ESCA)</li> <li>Secondary ion mass spectrometry (SIMS)</li> </ul> | <ul> <li>Mode I: Double Cantilever beam (DCB)</li> <li>Back-bonded DCB</li> <li>Metal Wedge</li> <li>Flatwise Tension</li> <li>Climbing Drum/Rapid Adhesion Test (RAT)</li> <li>Fracture Characterization</li> </ul> |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                      |  |  |  |  |  |







# Acknowledgements

- FAA, JAMS, AMTAS
- Boeing Company
- UW MSE
- UW Molecular Analysis Facility
  - National Science Foundation (grant NNCI-1542101)
  - CEI







Molecular Engineering & Sciences Institute





CLEAN ENERGY







### **Questions?**

Don't forget to fill out the feedback form in your packet or online at www.surveymonkey.com/r/jamsfeedback

### Thank you.





Achter of Excellence Advanced Materials in Transport Aircraft Structures

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE