

Understanding the Aerospace Resin Infusion Market Satisfaction Gaps

Mississippi State University Advanced Composites Institute

Home of the Marvin B. Dow Stitched Composites Development Center

Presenter: Wayne Huberty, PhD

Director or Research, ACI

JAMS Technical Review 9/29/21

Federal Aviation

Administration

Technology Readiness Assessment for Stitched and Unstitched Resin Infusion

Federal Aviation Administration

Ahmet Oztekin, PhD
Program Manager, JAMS, FAA

Dave Stanley *Technical Monitor, JAMS, FAA*

Advanced Composites Institute

Home of the Marvin B. Dow Stitched Composites Development Center

Christopher Bounds, PhD, MBA Director, ACI

Director, ACI

Tonia Lane

Deputy Director, ACI

Wayne Huberty, PhD

Director of Research, ACI

Source of matching funds: Various industrial partners

Federal Aviation

Administration

ACI Leadership Team and Faculty Collaborators

Dr. Chris Bounds ACI Director

Courtney Jethroe Accountant

Edward McGinnis Business Manger

Tonia Lane Deputy Director

Dr. Wayne Huberty Research Director

Paige McCraine Ops Manager

Dr. Chuck Pitman Prof. Emeritus

Dr. Mathew Priddy Professor Mech Eng.

Dr. Santanu Kundu Professor Chem Eng.

Dr. Zhenhua Tian Professor Aero Eng.

Dr. Han-Gyu Kim Professor Aero Eng.

Dr. Davy Belk Prof Aero Eng.

Dr. Rani Sullivan Head Aero Eng.

Dr. Dennis Smith Prof & Head Chem

Dr. Thomas Lacy, Jr Prof Mech Eng. Tx A&M

Ideation, Design, and Research & Development

Dr. Wayne Huberty Research Director

Sr. Research Eng.

Matthew Roberson Engineer

Bowen Cai PhD Candidate

Easton Williams Grad. Student

Hunter Watts Undergrad

Technology Readiness Assessment Stitched and Unstitched Resin Infusion (SURI)

Objective: identify current state, potential future, and address market concerns for SURI

Resin infusion allows for lower cost, higher rate composite manufacturing. What prevents its adoption, and can we address these concerns?

Literature Survey

Current state of infusion for aerospace

Novel solutions for infusion limitations

Voice of the Market

Determine research topics from the market

First university application

Testing & Analysis

Build industrial relevant test articles

MISSISSIPPI STATE

10/1/2021

Wayne Huberty, PhD

JAMS Technical Review

Advanced Composites Institute Capabilities

Thermoset 3D Printer 8'x4'x4'

New Product Blueprinting: Voice of the Market

Discovery

ID Problem Statements

Preference

Quantify Market Satisfaction Gaps

New Product Blueprinting: Voice of the Market

MISSISSIPPI STATE

10/1/2021

Wayne Huberty, PhD

JAMS Technical Review

pride

NPB results – Entire Market

Rating	Importance	Satisfaction
1	Not important at all	Totally unsatisfied
3	Not too important	Unsatisfied
5	Moderately important	Barely acceptable
7	Very important	Good
10	Critical	Totally satisfied

Conclusions

NCAMP and accurate sim. are most important and least satisfied

No satisfaction above 7

NPB results – Market segments can differ

10/1/2021

JAMS Technical Review

NPB results - OEM

Rating	Importance	Satisfaction
1	Not important at all	Totally unsatisfied
3	Not too important	Unsatisfied
5	Moderately important	Barely acceptable
7	Very important	Good
10	Critical	Totally satisfied

Conclusions

6 items are critical in importance

First time microcracking in top left

NPB results – Market Satisfaction Gaps

How to read graph

MSG > 30% is significant

Mathematical transform of importance. vs satisfaction.

Conclusions

Enormous MSG for sim. for Tier 1 and M.C. for OEM

Large discrepancy between new and experienced users

NPB results – the real Blueprint!

Problem Statements	Target	Test Method
NCAMP Qualification	Variation of fabric & resin, lower cost (equivalency), full physicals, shapes, full data (not peak)	
Manufacturing Consistency	99% defect free	5-6 sigma
Auto Preforming	Accuracy, quality, laydown rate , lower cost, flexibility	Prepreg
Accurate Simulation	Drapability, resin flow, springback, 2D to 3D part, manuf. inconsistency and structure, process (digital twin/thread)	Compare to test panels
Trained Workforce	Learn "why", local, ready immediately	Placements
Microcracking	Match Boeing 787 prepreg. Correlation between temperature, moisture, and microcracking.	Toray T800S/3900, Hexcel 8552; 1,000-3,000 thermocycles
Fast Cure Time	Tact time, lower cure temp.	4 h (50% lower than EP2400 @ 8 h)
Toughness	Match Boeing 787 prepreg. Expect RI can exceed.	Toray T800S/3900, SolvayEP2400, HexPly M21E & 8552
Long Pot life	Improve 50%	20 h (10 h @ 100° C Solvay EP2400)
Consistent Fiber Volume Fraction	60% ± 1-3%	ASTM D3171

UNIVERSITY

NPB results – the real Blueprint! – Auto Preforming

Topic	Target	
Pick and place accuracy	± 2 mm	
Fiber direction	UD ± 3°, fabric ± 5°	
Lay down rate	40-50 m ² /h small course, 100+ m ² /h large course	
Fabric slitting tolerance	± 0.005"	
End effector tolerance (lap/gap)	± 0.002"/± 0.008"	
Course-to-course tolerance (lap/gap)	± 0.015"/± 0.015"	
End placement	\pm 0.100" for up to ½ " tapes; \pm 0.015" for 1.5" tapes	

Summary

Showed the process of NPB

New Product Blueprinting: Voice of the Market

Discovery
ID Problem Studenments

Preference
Quantity Market Subdistination Gaps

Collected Importance vs. Satisfaction plots

Determined Market Satisfaction Gaps for different market segments

Quantitative outputs to address

Problem Statements	Target	Test Method
NCAMP Qualification	Variation of febric & resin, losser cost (equivalency), full physicals, shapes, full data (not peak)	
Manufacturing Consistency	99% defect free	5 6 sigma
Auto Preforming	Accuracy, quality, lay-flown rate , lower cost, flowbility	Prepreg
Accurate Standarion	Drapatitity resis flow, process, springback, 2D coupon to 3D pert, merest, inconsistency and structural (digital rwin/broad)	Compare to test panels
Trained Workdooce	Learn "why", local, ready immediately	Placements
Microcracking	Match Booing 707 proposeg. Correlation between temperature, mointure, and microcracking.	Toray T8005/3900, Hossel 8552; 1,000-3,000 thermocycles
Fast Cure Time	Tact time, lower cure temp.	4 h (50% lower than EP2800 ff 8 h)
Toughness	March Soeing 787 perpeg. Expect RI can exceed.	Tony T1005/2000, Solvay I P2400, Heal?) M21E & 8552
Long Fot life	Improve 50%	20 h (10 h e 100° C Solvay EP2100)
Consistent Fiber Volume Fraction	625 x 1-35	ASTM D3171

Questions

Presenter: Wayne Huberty, PhD

Director or Research, ACI whuberty@aci.misstate.edu