

Non-destructive Evaluation Methods for Detecting Major Damage in Internal Composite Structures <u>New Project Title:</u> Impact Damage Tolerance Guidelines for Stiffened Composite Panels

Francesco Lanza di Scalea Professor, Dept. of Structural Engineering University of California San Diego

2019 JAMS Technical Review May 22-23, 2019

Charlotte Convention Center, NC

Participants

- Principal Investigators & Researchers
 - PI: Prof. Hyonny Kim
 - Co-PI: Prof. Francesco Lanza di Scalea
 - Graduate Students
 - PhD: Eric Hyungsuk Kim, Margherita Capriotti, Ranting Cui
 - MS: none

FAA Technical Monitors

- Lynn Pham, Ahmet Oztekin
- Other FAA Personnel Involved
 - Larry Ilcewicz
- Industry Participation
 - Boeing, Bombardier, UAL, Delta, DuPont, JC Halpin

Motivation

- <u>High energy Blunt Impact Damage</u> (**BID**) of main interest:
 - involves large contact area, multiple structural elements
 - internal damage (cracked shear tie, frame, stringer heel crack) can exist with *little/no exterior visibility*
- External-only NDE needed

Overall Objectives:

- Quantify detectable and non-detectable damage characteristics
- Relate Ultrasonic Guided Wave NDE measurements to damage state and residual strength

Ultrasonic Guided Waves: structure is a natural "waveguide"

Guided-Wave Transfer Function: Single-Input-Dual-Output Scheme (SIDO)

SIDO Transfer Function Scanning Systems

Test Panels

$\left[45/\text{-}45/0/45/90/\text{-}45/0/90\right]_{s}$ CFRP stiffened panels

with hat-shaped, co-cured stringers

Results: stringer heel slit and stringer cap slit

Results: stringer flange impact

Results: stringer cap impacts

Residual Compression Strength Tests of Impacted Panels

Cap impacts

Flange impacts

Force Vs Displacement, Flange Impacts Compression

Residual Strength Estimation from UGW Scattering

Finite Element Analysis (isotropic plate. Holes from 0.05 mm to 50 mm dia, 150 kHz freq)

UGW Experiments

(Hexcel [0]₁₀ plain weave 282/SC780. Holes from 2.5 mm to 25 mm dia, various frequencies)

UGW Transmission Strength

Elastic Constants Identification from UGW Testing

Impact Damage causes change in UGW transmission. Why? Presence of damage directly relates to change in Elastic Constants \rightarrow inverse problem.

Transversely isotropic lamina: five unknowns $E_{11}, E_{22}, v_{12}, G_{12}$ and v_{23}

Engineering laminate properties from CLT: seven unknowns

$$\underbrace{E_{\mathrm{x}}, E_{\mathrm{y}}, \nu_{\mathrm{xy}}, G_{\mathrm{xy}}}_{\mathbf{y}}, \underbrace{K_{\mathrm{x}}, K_{\mathrm{y}}, K_{\mathrm{xy}}}_{\mathbf{y}}$$

"in-plane"

"out-of-plane"

- Use <u>Guided-Wave Phase Velocity Dispersion</u> <u>Inversion</u> and <u>Simulated Annealing</u> <u>Optimization</u>.
- Use <u>SAFE method</u> to solve forward problem.
- Utilize three fundamental guided-wave modes (S₀, A₀ and SH₀) propagating <u>along a single</u> <u>direction</u> (x).

Constants Identification Flowchart

Objective function to minimize:

mismatch of phase velocity dispersion curves

$$d = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{c_{\text{ph,pred}}(\omega_i) - c_{\text{ph,true}}(\omega_i)}{c_{\text{ph,true}}(\omega_i)} \right)^2}$$

for S_0 , A_0 and/or SH_0

Cui, R. and Lanza di Scalea, F., "On the identification of the elastic properties of composites by ultrasonic guided waves and optimization algorithms," <u>Composite Structures</u>, in press, 2019.

Constants Identification Results: anisotropic Iaminate

SAFE analysis

"normal - shear" coupling and "longitudinal - transverse" coupling !!

Constants Identification Results: anisotropic Iaminate – Iamina properties (1D inversion)

Constants Identification Results: anisotropic laminate engineering properties (in-plane)

Constants Identification Results: anisotropic laminate engineering properties (out-of-plane)

Summary

- Methods of <u>UGW testing</u> investigated for inspection of impact damage in composite stiffened panels
- <u>Two scanning systems</u> based on UGW dual-output scheme:
 - non-contact "air-coupled" system (damage in skin and stringer flange)
 - hybrid "impact/air-coupled" system (damage in stringer cap)
- UGW studies in plates with holes show relation between <u>wave</u> scattering and <u>residual compression strength</u>
- Inverse procedure based on matching phase velocity UGW dispersion curves for identifying elastic properties of composite panels (lamina constants and laminate engineering constants)

Ongoing/Future Work

- <u>Package mini-impactor</u> into scanning system for automatic scan
- Expand <u>elastic constants identification</u> to impact damage for <u>residual</u> <u>strength estimation</u>
- Conduct additional analyses of <u>wave scattering</u> through various damage types/severity for <u>residual strength estimation</u>

EXTRA SLIDES

Guided-Wave Transfer Function: Semi-Analytical-Finite-Element (SAFE) method

Displacement field

$$(x, y, z, t) = \begin{bmatrix} \sum_{j=1}^{n} N_j(y, z) U_{xj} \\ \sum_{j=1}^{n} N_j(y, z) U_{yj} \\ \sum_{j=1}^{n} N_j(y, z) U_{zj} \end{bmatrix}^{(e)} e^{i(kx - \omega t)}$$
$$\mathbf{C}_{\mathbf{\theta}} = \mathbf{R}_1 \mathbf{C} \mathbf{R}_2^{-1}$$

Lamina stiffness matrix

$$\mathbf{L}_{\boldsymbol{\theta}} = \mathbf{R}_1 \mathbf{C} \mathbf{R}_2^{-1}$$

Eigenvalue problem

$$\left[\mathbf{A} - k \,\mathbf{B}\right]_{2M} \,\mathbf{Q} = 0$$

Eigenvalues (ω , k): dispersion curves Eigenvectors U: cross-sectional mode shapes

Transfer function (band-limited) – freq. domain

 $u^{(e)}$

$$\mathbf{U} = \sum_{m=1}^{M} \alpha_m \mathbf{\Phi}_m^{Rup} \exp[ik(x - x_S)] \quad \text{with} \quad \alpha_m = -\frac{\mathbf{\Phi}_m^L \mathbf{p}}{B_m}$$

Transfer Function Comparison: Experimentalvs. Numerical0.1Receiver 1entire signal0.1Receiver 2

Non-Contact NDE Scanning Prototype

- Line scan approach with non-contact sensors on moving carriage
- Air-coupled piezocomposite transducers (170 kHz)

Mini-Impactor (probes interior + portable)

Frequency range up to 500 kHz and peak

Advanced Materials in

NDE/SHM Lab

Thermography for Independent Damage Survey

Thermography (TSR): ground truth of damage for quantitative damage survey

Statistical Analysis

Constants Identification Results: anisotropic laminate – lamina constants (5D inversion)

% Error

Property Identification Results: quasiisotropic laminate

SAFE analysis

Property Identification Results: quasiisotropic laminate

Property Identification Results: quasiisotropic laminate

Non-Contact NDE Scanning Prototype

Statistical Analysis Results:

(Skin modes only)

Non-Contact NDE Scanning Prototype

CECAN

Mini Impactor on Built-up Panel

- Excitation and measurement (R15 contact transducer) on exterior skin-side
- S0 waves through skin path move faster (~150 kHz);
- A0 waves through C-frame path move slower (~50 kHz);
- Specimen with C-frame removed has only skin modes content

Mini Impactor on Built-up Panel

• Internal shear tie damage detection using mini-impactor excitation

Residual Strength Estimation: Validation

- Three new stringer panels fabricated
 - T800/3900-2 uni-directional tape plies. Skin thickness = 3.175mm
 - Panel dimensions: 1m x 1.3m
 - Five stringers with 0.26m spacing
 - Various impact energy levels

Residual Strength Estimation Plans: Flat Stringer Panel

Flat Stringer Panel Impact Plan

- Stringer cap impacted portion will be trimmed into 0.3m specimens for compression w/o buckling
- Stringer flange impacted portion will be trimmed into 0.48m specimens for compression w/ buckling

Residual Strength Estimation: Wave Scattering

Empirically determine the exponential value e, and relate values to estimate residual strength

Wave_Amplitude= (Dam_Size)^{-e} $\longrightarrow \sigma_{crack} / \sigma_{pristine} = (L_0 / Dam_Size)^m$ [Caprino]

Caprino, Giancarlo. "On the prediction of residual strength for notched laminates." Journal of Materials Science 18.8 (1983): 2269-2273.

Looking forward

Correlate the features with damage location and type: preliminary results of defect characterization (extension, severity, type) by UGW.

Looking forward

• Further investigation on internal structural wave penetration. (Global Local modeling)

Looking forward

• Further investigation on internal structural wave penetration. (Global Local modeling)

