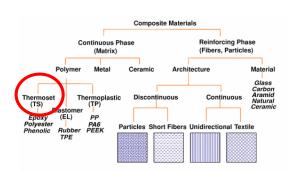


Advanced Fiber Reinforced Polymer Materials Guidelines for Aircraft Design Certification Process

John Tomblin, Wichita State University Rachael Andrulonis, Wichita State University Royal Lovingfoss, Wichita State University

JAMS 2019 Technical Review May 22 - 23, 2019



Advanced Fiber Reinforced Polymer Materials Guidelines for Aircraft Design Certification Process

Motivation and Key Issues

- Aircraft manufacturers and airlines are investigating methods to reduce manufacturing costs and increase operational efficiency.
- Major OEMs beginning to incorporate new processes for part manufacturing into production using advanced technologies.
- Advances in vehicle development will likely accelerate during the next decade as new emerging technologies are applied to design and placed into production throughout the aircraft industry.
- Research needed to prove the safety and integrity of these aircraft and advanced materials for the general public.

TODAY, IF YOU LOOK AT EVERY AIRPLANE FLYING IN THE COMMERCIAL FLEETS AROUND THE WORLD, 26.000 AIRCRAFT

N THE NEXT 20 YEARS WE ARE GOING TO BUILD

40,000 MORE.

Figure 1. Composite Material Classes (Source: Friedrich, Composite Materials)

Thermoplastics in Aviation

Why thermoplastics?

- Environmental resistance: Impact, chemical, flame resistance, lower moisture absorption; no shelf life
- Cost: Less clean stringent cleanroom requirements and lower cost (as long as traditional autoclaves are not used for consolidation)
- Manufacturing benefits: Good candidate for automated processes, ability to retain significant portion of strength above Tg, can be melted and remolded and therefore have the ability to be welded (eliminating need for bonding and riveting)

Current Applications:

- Gulfstream 650 aircraft. This twin-engine business jet, which began production in 2012, is the
 first commercial airplane to use critical control surfaces made from thermoplastic
 composites. Its elevator and vertical tail rudder are made with carbon fiber/PPS composite
 and then assembled using induction welding via an FAA-certified process.
- Airbus (Toulouse, France) has successfully employed thermoplastic composites on the leading edges of its A300-series aircraft for decades (not critical control surfaces).

Market Growth:

- Several suppliers investing in thermoplastics such as Toray, Hexcel, Arkema
- Replacement parts now being made with thermoplastics (Daher contracted to supply thermoplastic composite structural parts for the Boeing 787)

Source: https://www.compositesworld.com/columns/thermoplastic-composites-in-aerospace-past-present-and-future

Overall Program Information

- FAA Technical Monitor: Ahmet Oztekin
- FAA AVS Sponsor: Cindy Ashforth
- NIAR Contacts: John Tomblin, Royal Lovingfoss, Rachael Andrulonis
- Industry Partners: Toray (TenCate), several steering committee members

Overall Goals

- Primary goal: To develop a <u>framework for the qualification</u> of new and innovative composite material systems including guidelines and recommendations for their characterization, testing, design and utilization.
- Secondary goal: To transition the test data and guidelines generated in this program into <u>shared databases</u>, such as CMH-17.

Tasks

- FY2016: Qualification
 - Overall process
 - Trial test matrix
 - Development of specs, test plan
 - Prepreg and panel fabrication
 - Testing and resulting data
 - Transition plans
- FY2018:
 - Equivalency on original qualification material
 - Thermoplastic chopped fiber characterization

Technical Approach

- Develop a framework to advance thermoplastic composite materials into the aerospace industry.
- Utilize the experience and framework of the NCAMP composite program as an example of process sensitive material characterization.
- Assess the validity with equivalency testing.

Task 3: Development of Qualification Program

GOAL: Generate the framework for a qualification test program including material and process specifications, test matrices, and documentation requirements.

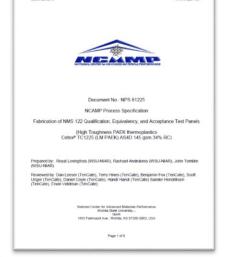
Objectives:

- Select advanced fiber thermoplastic PMC material and process to initially develop this framework.
 The material was selected with input from the steering committee.
- Address quality aspects of the manufacturing process and the framework for a quality assurance program.
- Draft material and process specifications for selected material.
- Develop a test matrix including required physical and mechanical data.
- Generate substantial mechanical property test data necessary for development of statistical guidelines using accepted test standards for the selected material.

Project Status

Material Selection

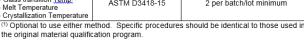
- Toray (TenCate) TC1225 (PAEK) unidirectional tape (semi-crystalline engineered polyarlyetherketone resin)
- Fiber form originally AS4D → now changed to T700 due to acquisition by Toray


Current Activity

- Screening Studies assisted in development of test matrix
- Documentation material and process specifications complete
- Test Plan complete
- Qualification Production
 - Audit at TenCate (December 2017) signed and complete
 - Panels fabricated by TenCate Netherlands facility
 - Nearly all testing is now complete (data reduction and statistics are in progress)

March 20, 2018

Material Specification (NMS 122)



- Scope form, application, classification
- **Applicable Documents**
- **Technical Requirements**
 - Detail specification
 - Constituent Material Requirements
 - Prepreg physical and chemical requirements
- Quality Assurance
- Preparation for Delivery

Property	Product Form	Test Method ⁽¹⁾	Number of Replicates
Fiber Areal Weight	Prepreg	ASTM D3776 or SACMA SRM 23R-94	Each Lot/Batch(2)
Resin Content	Prepreg	ASTM D3171	Each Lot/Batch ⁽²⁾
Differential Scanning Calorimetry (DSC)			
Glass Transition Temperature Melt Temperature	Prepreg	ASTM D3418 or SACMA SRM 25R-94	Each Lot/Batch ⁽³⁾
Crystallization Temperature			

(2) Three specimens minimum should be taken across the width of each prepreg lot. (3) Three specimens minimum should be taken for each prepred lot.

TA	BLE 2 - Molded Laminate I	Physical Properties
Property	Test Method	Number of Replicates
Molded Ply Thickness	ASTM D3171-11	10 measurements per panel
Laminate Density	ASTM D792-08	2 per batch/lot minimum
Fiber Volume, % by Volume	ASTM D3171-11	2 per batch/lot minimum
Resin Content, % by Weight	ASTM D3171-11	2 per batch/lot minimum
Void Content, % by Volume	ASTM D3171-11	2 per batch/lot minimum
DSC (dry) - Glass transition <u>Temp⁽¹⁾</u> - Melt Temperature - Crystallization Temperature	ASTM D3418-15	2 per batch/lot minimum

TABLE 3 - Required Molded Laminate Tests for Mechanical Properties						
	(Class 1 Only)					
Property	Test Temperature	Test Method ⁽¹⁾	Number of Replicates			
0° Tension Strength and Modulus	RT	ASTM D3039	5			
90/0° Compression Strength	RT	ASTM D6641	5			
00 Flex Strength	RT	ASTM D790-5	5			
BBS Strength	RT	ASTM D2344	5			

(1) Specific procedures should be identical to those used in the original material

Process Specification (NPS 81225)

NCAMP Process Specification
Fabrication of NMS 122 Qualification, Equivalency, and Acceptance Test Panels

(High Toughness PAEK thermoplastics Cetex* TC1225 (LM PAEK) AS4D 145 gsm 34% RC)

- Scope
- Applicable Documents
- Materials
- Test Laminate Fabrication (compression molding)

Polyimide Film

Picture frame

Quality Assurance

Top plate

Polyimide Film Bottom plate

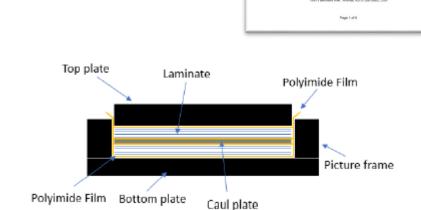


Figure 1. Molding Test Panels Schematic for TC1225

Laminate

Figure 2. Molding Test Panels Schematic for TC1225 (Multiple panels)

Screening Studies

- Trial screening test program was conducted per recommendation of the Steering Committee:
 - Does moisture uptake affect strength properties significantly? If not, consider removing ETW from test matrix.
 - What elevated temperature(s) should be selected for qualification testing? Full 3
 batch or single batch recommendations.

<u>Test Temperatures</u>:

Phase 1: 180°F, 250°F, and 350°F

Phase 2: 200°F, 225°F, 275°F

Phase 3: 400°F and 450°F

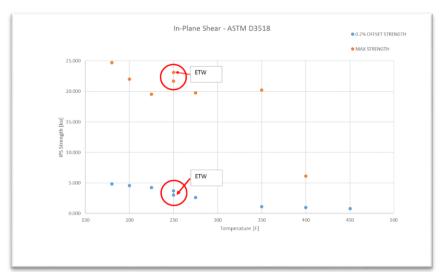
Mechanical Properties:

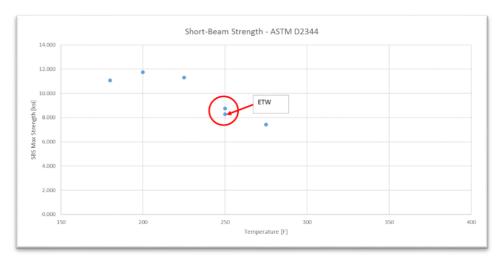
- IPS: [+45/-45]_{4S}

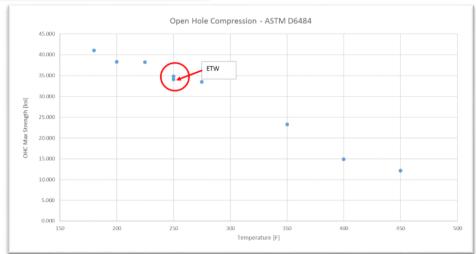
- SBS: [0]₃₄

OHC: [+45/0/-45/90]_{3S}

<u>Physical Properties</u>: DSC/DMA were evaluated







Screening Results Overview

Test Plan

- Test Methods
- Panel and Specimen Identification
- Prepreg and Resin Testing
- Molded Laminate Physical Testing
- Molded Lamina and Laminate Mechanical Property Testing
- Inspection, conformance, witnessing, shipping
- Data reduction and reporting

Physical Test Results

	Specific Gravity (Relative Density)	Fiber Content by	Matrix Digestion	Void Content
	ASTM D792-13		ASTM D3171-15 (Test Method I, Procedure B)	
	Specimen	Fiber	Resin Content	Void Content
	Density [g/cc]	Volume [%]	Volume [%]	Volume [%]
AVERAGE	1.5680	58.54	40.01	1.45
STANDARD				
DEVIATION	0.0063	1.21	1.36	0.36
COEFF. OF VARIATION	0.4031	2.06	3.40	24.66
MINIMUM	1.5545	56.06	36.63	0.25
MAXIMUM	1.5867	61.48	42.66	2.08
NUMBER OF				
SPECIMENS	111	111	111	111

Results include approximately 1/3 of all physical test coupons.

Other results are similar.

Lamina Test Matrix

	Test Type and		Numb		ches x Nur of Test S ₁	mber of Pa	nels x
Layup	Direction	Property	Test	t Tempera	ture/Moist	ture Condi	tion
			CTA	RTA	ETA1	ETA2	ETW
[0] ₈	ASTM D3039 0° Tension	Strength, Poisson's Ratio, and Modulus	3x2x3	3x2x3	3x2x3	1x2x3	1x2x3
$[0]_{20}$	ASTM D6641 0 _o Compression	Poisson's Ratio and Modulus	3x2x3	3x2x3	3x2x3	1x2x3	1x2x3
[90°] ₁₆	ASTM D3039 90 ₀ Tension	Strength and Modulus	3x2x3	3x2x3	3x2x3	1x2x3	1x2x3
[90°] ₂₀	ASTM D6641 90° Compression	Strength and Modulus	3x2x3	3x2x3	3x2x3	1x2x3	1x2x3
[90/0]4s	ASTM D6641 0° Compression	Strength and Modulus	3x2x3	3x2x3	3x2x3	1x2x3	1x2x3
[+45/-45°] _{4s}	ASTM D3518 In- Plane Shear	Strength and Modulus	3x2x3	3x2x3	3x2x3	1x2x3	1x2x3
[0°] ₂₂	ASTM-1790 Flex	Strength	3x2x3	3x2x3	3x2x3	1x2x3	1x2x3
[0] ₃₄	ASTM D2344 Short Beam	Strength	3x2x3	3x2x3	3x2x3	1x2x3	1x2x3

Test environments are defined as:

 $CTA = -65\pm5$ °F, ambient

RTA = $70\pm10^{\circ}$ F, room temperature ambient

 $ETA1 = 275 \pm 5$ °F, ambient

 $ETA2 = 400 \pm 5$ °F, ambient

ETW = 275±5°F, wet (equilibrium moisture content per section 6.1)

Laminate Test Matrix

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE

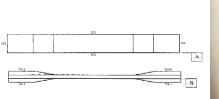
FOR AVIATION RESEARCH

re les	ot iviati ix	.				n	H.T.
		Num	ber of Bat	ches x Nur	nber of Pa	nels x	
			Number of Test Specimens Test Temperature/Moisture Condition				
(%0°/%±45°/%90°)		1					
Actual Test Type	Test Type and Layup	Property	CTA	RTA	ETA1	ETA2	ETW
25/50/25 - QI)	ASTM D3039 Un-notched Tension						
JNT1	[45/0/-45/90]2S	Strength & modulus	3x2x3	3x2x3	3x2x3	1x2x3	1x2x3
(10/80/10)	ASTM D3039 Un-notched Tension						
UNT2	[45/-45/0/45/-45/90/45/-45/45/-45]S	Strength & modulus	3x2x3	3x2x3	3x2x3		
(50/40/10)	ASTM D3039 Un-notched Tension						
UNT3	[0/45/0/90/0/-45/0/45/0/-45]S	Strength & modulus	3x2x3	3x2x3	3x2x3		
(25/50/25 - QI)	ASTM D6641 Un-notched Compression						
JNC1	[45/0/-45/90]3S	Strength & modulus		3x2x3	3x2x3	1x2x3	1x2x3
(10/80/10)	ASTM D6641 Un-notched Compression				 		
JNC2	[45/-45/0/45/-45/90/45/-45/45/-45]S	Strength & modulus		3x2x3	3x2x3		
50/40/10)	ASTM D6641 Un-notched Compression				 		
JNC3	[0/45/0/90/0/-45/0/45/0/-45]S	Strength & modulus		3x2x3	3x2x3		
25/50/25 - QI)	ASTM D2344 Short Beam						
SBS1	[45/0/-45/90]3S	Strength		3x2x3	3x2x3	1x2x3	1x2x3
25/50/25 - QI)	ASTM D5766 Open Hole Tension						
23/30/23 - Q1) DHT1	[45/0/-45/90]2S	Strength	3x2x3	3x2x3	3x2x3	1x2x3	1x2x3
10/80/10)	ASTM D5766 Open Hole Tension				1		
OHT2	[45/-45/0/45/-45/90/45/-45/45/-45]S	Strength	3x2x3	3x2x3	3x2x3		
50/40/10)	ASTM D5766 Open Hole Tension				1		
OHT3	1	Strength	3x2x3	3x2x3	3x2x3		
25/50/25 - QI)	[0/45/0/90/0/-45/0/45/0/-45]S ASTM D6742 Filled Hole Tension						
25/50/25 - QI) HT1		Strength	3x2x3	3x2x3	3x2x3	1x2x3	1x2x3
10/80/10)	[45/0/-45/90]2S ASTM D6742 Filled Hole Tension				-		
10/80/10) HT2		Strength	3x2x3	3x2x3	3x2x3		
50/40/10)	[45/-45/0/45/-45/90/45/-45/45]S ASTM D6742 Filled Hole Tension				-		
· · · · · · · · · · · · · · · · · · ·		Strength	3x2x3	3x2x3	3x2x3		
FHT3 25/50/25 - QI)	[0/45/0/90/0/-45/0/45/0/-45]S ASTM D6484 Open Hole Compression				-		
• /	1 .	Strength		3x2x3	3x2x3	1x2x3	1x2x3
DHC1	[45/0/-45/90]4S ASTM D6484 Open Hole Compression				-		
10/80/10)		Strength		3x2x3	3x2x3		
OHC2	[45/-45/0/45/-45/90/45/-45/45/-45]2S				-		
50/40/10)	ASTM D6484 Open Hole Compression	Strength		3x2x3	3x2x3		
OHC3	[0/45/0/90/0/-45/0/45/0/-45]2S	-			-		
25/50/25 - QI)	ASTM D6484 Filled Hole Compression	Strength		3x2x3	3x2x3	1x2x3	1x2x3
HC1	[45/0/-45/90]4S				ļ		
10/80/10)	ASTM D6484 Filled Hole Compression	Strength		3x2x3	3x2x3		
HC2	[45/-45/0/45/-45/90/45/-45]2S						
50/40/10)	ASTM D6484 Filled Hole Compression	Strength		3x2x3	3x2x3		
HC3	[0/45/0/90/0/-45/0/45/0/-45]2S						
25/50/25 - QI)	ASTM D5961 Single Shear Bearing	Strength & Deformation		3x2x3	3x2x3	1x2x3	1x2x3
SB1	[45/0/-45/90]2S						
10/80/10)	ASTM D5961 Single Shear Bearing	Strength &		3x2x3	3x2x3		
SB2	[45/-45/0/45/-45/90/45/-45/45/-45]S	Deformation					
50/40/10)	ASTM D5961 Single Shear Bearing	Strength &		3x2x3	3x2x3		
SB3	[0/45/0/90/0/-45/0/45/0/-45]S	Deformation					
100/0/0)	ASTM D6415 Interlaminar Tension Strength	Strength	1x1x6	1x1x6	1x1x6	1x1x6	1x1x6
LT	[0]30 (note: curved panel)						
25/50/25 - QI)	AATA D7136 & D7137 Compression After Impact (1500)			1x1x6	ANAT	1 C 1x6	1x1x6
CAI1	ALT D7136 & D7137 Compression After Impact (1500 L45/0) [45/0/-45/90]4S	Suengu		1X1X6	OWL	131x6	IXIX

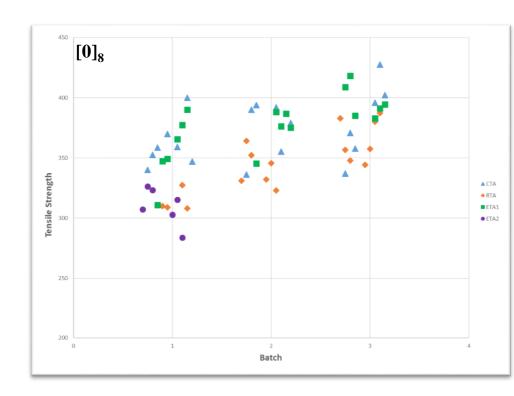
Test environments are defined as: $CTA = -65\pm5$ °F, ambient $RTA = 70\pm10^{\circ}F$, room temperatur $ETA1 = 275\pm5$ °F, ambient $ETA2 = 400 \pm 5$ °F, ambient $ETW = 275\pm5$ °F, wet (equilibrium

Overall Observations

- Flex, SBS, and ILT tests at certain conditions did not exhibit significant load drops and often were not taken to failure → offset strengths presented.
- Coefficients of variation are well within typical thermoset values (~2-7%).
- Overall batch to batch variation does not appear significant, however statistics still need to be calculated.
- Decreasing strength values as temperatures increased was not consistent across properties.



0° Tension



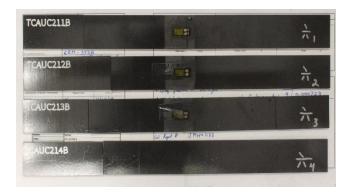
ASTM D3039 TENSILE PROPERTIES OF POLYMER MATRIX COMPOSITE MATERIALS

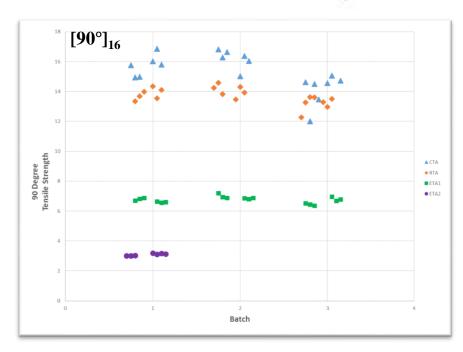
	Tensile Strength [ksi]		Modulus [Msi]		Poisson's Ratio
	Mean	CV	Mean CV		Mean
CTA	370.66	6.94%	19.14	2.09%	0.33
RTA	344.68	7.33%	18.93	2.27%	0.34
ETA1	376.05	6.92%	18.36	2.45%	0.33
ETA2	309.82	5.04%	18.86	2.10%	0.50

Post Test: -65F/A

Post Test: RTA

Post Test: 400F


90° Tension

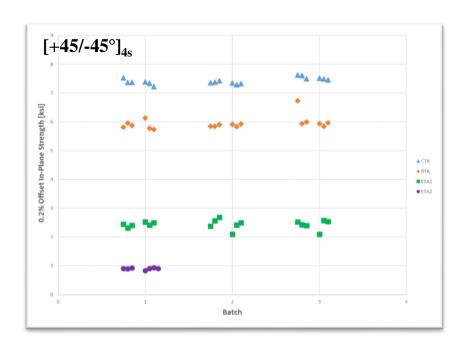

ASTM D3039 TENSILE PROPERTIES OF POLYMER MATRIX COMPOSITE MATERIALS

	Tensile St	trength [ksi]	Modulus [Msi]		
	Mean	CV	Mean	CV	
СТА	15.29	7.96%	1.41	3.18%	
RTA	13.68	3.99%	1.32	2.93%	
ETA1	6.75	3.04%	1.01	3.65%	
ETA2	3.09	2.40%	0.26	2.77%	

Post Test: -65F/A CECAM

Post Test: RTA

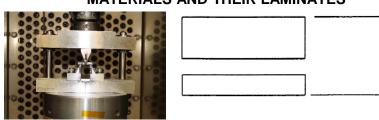
In-Plane Shear



ASTM D 3518 IN-PLANE SHEAR RESPONSE OF POLYMER MATRIX COMPOSITE MATERIALS BY TENSILE TEST OF A ±45° LAMINATE

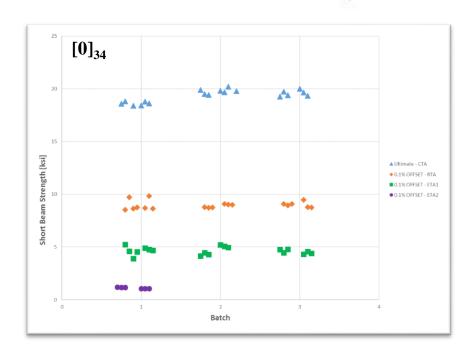
		Offset th [ksi]	Strength @ 5% Strain [ksi]		Ultimate Strength [ksi]		Shear Modulus [Msi]	
	Mean	CV	Mean	CV	Mean	CV	Mean	CV
CTA	7.42	1.47%	13.14	1.60%	32.07	3.02%	0.67	1.87%
RTA	5.94	3.66%	9.51	1.20%	28.42	4.80%	0.59	1.70%
ETA1	2.43	6.17%	4.57	3.85%	25.79	4.90%	0.24	7.86%
ETA2	0.90	3.76%	(1)	(1)	(2)	(2)	0.07	3.96%

- (1) SHEAR STRENGTH AT 5% STRAIN IS NOT REPORTED FOR ALL SPECIMENS DUE TO STRAIN GAGE FAILURE BEFORE OBTAINING A SHEAR STRAIN OF 50000 MICROSTRAIN
- (2) SPECIMENS NOT TESTED TO FAILURE DUE TO MAXING OUT LOAD FRAME'S FIXTURE TRAVEL

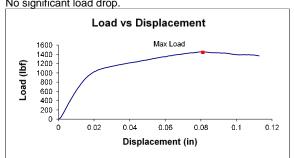

Lamina Short Beam Shear

-8-

-4-



ASTM D2344 SHORT-BEAM STRENGTH OF POLYMER MATRIX COMPOSITE **MATERIALS AND THEIR LAMINATES**


	0.1% OFFS	ET SBS [ksi]	0.2% OFF	SET SBS [ksi]
	Mean	CV	Mean	cv
CTA (1)	19.34	2.91%	N/A	N/A
RTA	8.96	4.03%	10.31	2.90%
ETA1	4.63	7.65%	5.24	6.00%
ETA2	1.13	6.45%	1.35	3.28%

(1) Ultimate strength reported for CTA (not offset)

Lamina SBS RTA

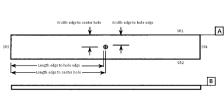
No significant load drop.

Post Test: RTA

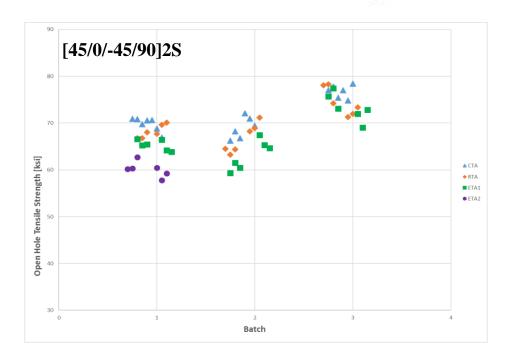
Post Test: -65F/A

Post Test: 275F/A

Post Test: 400F/A



Open Hole Tension (25/50/25)



ASTM D5766
OPEN HOLE TENSILE STRENGTH OF POLYMER MATRIX
COMPOSITE LAMINATES

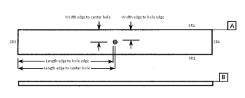
	OHT Str	OHT Strength [ksi]			
	Mean	CV			
CTA	71.72	5.44%			
RTA	69.82	6.14%			
ETA1	67.24	7.62%			
ETA2	60.12	2.70%			

Post Test: -65F/A

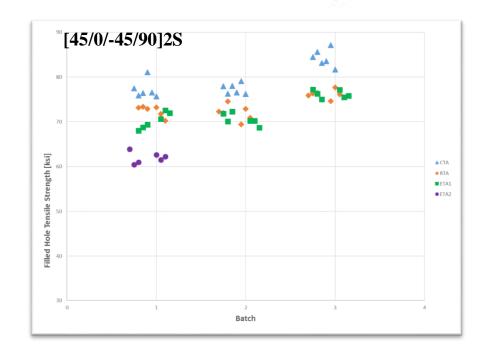
Post Test: RTA

Post Test: 275F/A

Post Test: 400F/A



Filled Hole Tension (25/50/25)



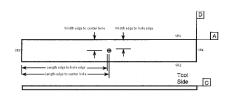
ASTM D6742
FILLED-HOLE TENSION TESTING OF POLYMER MATRIX
COMPOSITE LAMINATES

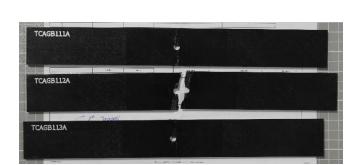


	FHT Stre	FHT Strength [ksi]			
	Mean	CV			
СТА	79.60	4.74%			
RTA	73.54	3.15%			
ETA1	72.31	4.27%			
ETA2	61.96	2.04%			

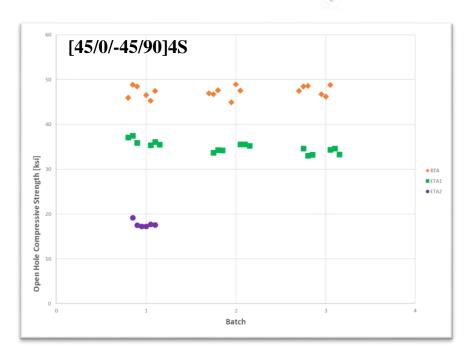
Post Test: RTA

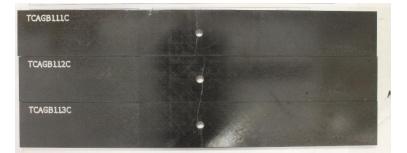
Post Test: 275F/A


Open Hole Compression (25/50/25)



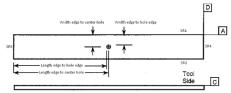
ASTM D6484 (PROCEDURE A) OPEN HOLE COMPRESSIVE STRENGTH OF POLYMER MATRIX COMPOSITE LAMINATES

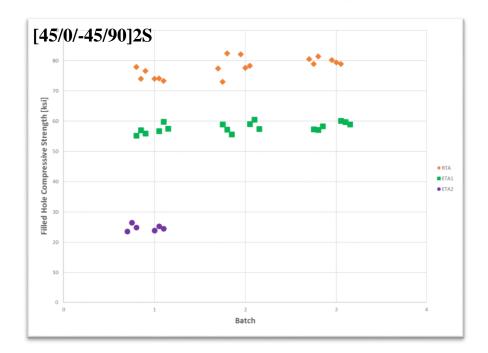

	OHC Strength [ksi]			
	Mean	CV		
RTA	47.33	2.61%		
ETA1	34.96	3.61%		
ETA2	17.77	4.02%		



Post Test: RTA

Post Test: 275F/A


Filled Hole Compression (25/50/25)

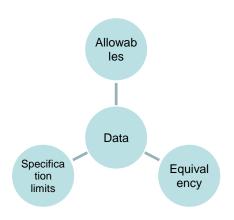


ASTM D6742 FILLED-HOLE COMPRESSION TESTING OF POLYMER **MATRIX COMPOSITE LAMINATES**

	FHC Strength [ksi]			
	Mean	CV		
RTA	77.79	3.91%		
ETA1	57.94	2.71%		
ETA2	24.60	2.92%		

Post Test: 275F/A

Post Test: 400F/A


Task 4: Development of statistical guidelines

GOAL: Understanding of how parameters interact and affect variability as well as final allowables.

- Establish qualification statistical requirements. The factors affecting variability will be assessed during this task.
- Establish equivalency requirements including specification minimums for acceptance.
- Status: Data will be analyzed over next 2 months and report drafted.

Task 5: Guidelines and Recommendations

GOAL: To provide guidelines to industry for the collection of statistically meaningful critical data that designers need to utilize thermoplastic composite materials potentially including:

- Creation of a shared database to include material test data, material and process specifications and analysis methods.
 - Status: Material and statistical reports will be sent to Steering Committee for review this summer.
- Development of handbook data and guidelines for CMH-17.
 - Status: Presentation and submission of data to DRWG at October 2019 meeting.
- Transition specification to SAE P-17.
 - Status: SAE P-17 will set up work item once NCAMP specifications are published.

Timeline for Qualification

	Activity	Completion Date	Milestone / Deliverable	Complete?
1.1	Survey - Develop survey questions and administer to PMC community - Collect survey results and analyze for input on material selection	11/30/2016	Deliverable	√
1.2	Industry Steering Committee - Establish group of participants - Create online portal for document sharing and data repository	12/1/2016	Milestone	✓
1.3	Preliminary drafts of qualification framework - Material and process specifications - Test plan - Conformity documentation	6/30/2017	Deliverable	√

Timeline for Qualification

	Activity	Target Date	Milestone / Deliverable	Complete?
1.1	Trial / Screening Studies (ongoing) - Perform thermal and mechanical tests to assist in test matrix development and selection of elevated test temperature - Present data to FAA, Industry Steering Committee, NCAMP Partners	12/31/2017	Milestone	✓
1.2	Qualification Material - Site audit complete (scheduled for 12/7-12/8/2017) Panels built and delivered to NIAR (see next slide)	10/29/2018	Milestone	✓
1.3	Qualification Testing - Perform physical and mechanical testing on qualification panels. - Generate test data for qualification program.	5/31/2019	Milestone	√
1.4	Develop Statistical Guidelines based on qualification data	7/31/2019	Milestone	
1.5	NCAMP Reports on Qualification Data - Material technical report - Statistical analysis technical report	7/31/2019	Deliverable	
1.6	CMH-17 - Submit content, data, and protocols to Composite Materials Handbook 17 (CMH-17)	10/21/2019	Deliverable	
1.7	Final Report - Final Technical Report on the Guidelines for Thermoplastic Continuous Fiber PMC Qualification	12/31/2019	Deliverable	

Looking Forward...

- Continuous Fiber Thermoplastic
 - Complete qualification of continuous fiber thermoplastic composite
 - Perform equivalency to ensure repeatability and stability of process

Discontinuous Fiber Thermoplastic Characterization

- Steering Committee input and involvement
- Partner: Teijin (Toho Tenax)
- Proposed Material: Tenax-E IMS65P12 24K TPUD with PEEK polymer
 - Two forms: 0.5" X 0.5" and 0.06" X 0.5". The latter is for finer detailed 3D molding of components.
- Trial Studies: Conduct mechanical testing on both chip sizes to better understand variability, ease of handling and test method applicability. A small test matrix will be generated and the results will help guide future work with chopped fiber thermoplastics.
- Align program with UW work on discontinuous fiber composites
- Prepare for a full qualification in future years

JOINT ADVANCED MATERIALS & STRUCTURES
CENTER OF EXCELLENCE