

Ceramic Matrix Composite Materials Guidelines for Aircraft Design and Certification

John Tomblin, Wichita State University Rachael Andrulonis, Wichita State University Matt Opliger, Wichita State University

JAMS 2019 Technical Review May 22-23, 2019

WICHITA STATE UNIVERSITY NATIONAL INSTITUTE FOR AVIATION RESEARCH

Ceramic Matrix Composite Materials Guidelines for Aircraft Design and Certification

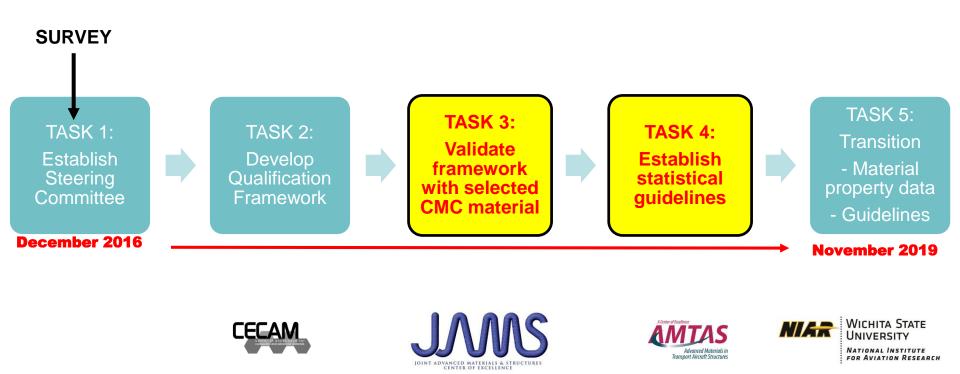
- Motivation and Key Issues
 - Expanded use of CMCs in engine and other hot section applications
 - CMCs require their own set of rules separate from more established PMCs
 - No "fully approved" data in CMH-17
 - Similar complexity to PMCs in terms of anisotropy, fiber architecture, high strength/stiffness fibers, and production process sensitivity and variability, they are also different in many ways such as:
 - Composite constituents
 - Degradation, damage, and failure mechanisms
 - High temperature life predictions
 - High temperature bonding challenges
 - NDI challenges
 - Repairability

Development of Qualification Program

- Technical Monitor: Ahmet Oztekin
- NIAR Contacts: John Tomblin, Rachael Andrulonis, Matt Opliger
- **Industry Partners**: Axiom Materials (prepreg), AC&A (panel), 3M (fiber and fabric), several steering committee members

Overall Goals

- Primary goal: To develop a <u>framework for the qualification</u> of new and innovative composite material systems including guidelines and recommendations for their characterization, testing, design and utilization.
- Secondary goal: To transition the test data and guidelines generated in this program into <u>shared databases</u>, such as CMH-17.



Technical Approach

- Develop a framework to advance CMC materials into the aerospace industry.
- Utilize the experience and framework of the NCAMP composite program as an example of process sensitive material characterization.
- Assess the validity with equivalency testing.

Task 1: Steering Committee

- Steering committee formed with interested individuals
- Kick-off meeting was held in December 2016, Monthly meetings
- Collaboration with CMH-17
- Includes participants from industry (Pratt & Whitney, Free Form Fibers, Honeywell, Rolls Royce, Boeing, GE, 3M) and government (NASA, AFRL, FAA)
- Review and provide feedback on qualification plan, documents and resulting data
 - Overall test plan
 - Material specification
 - Process specification
 - Pedigree/documentation
 - Data
 - Statistical analyses

NCAMP Portal

- All members of the Steering Committee have access
- Monthly meeting charts
- Documents for review
- Related research

ome contact documents for review sci nursday, January 18,)18		IC Adhesive Repair	Advanced Fiber
)18			Advanced Fiber
CMC Qualification Framework Documents			
CMC Qualification Framework Documents			
Title	Owner	Category	Modified Date
Test Plan Comments and Notes (9/21/2017)	Rachael Andrulonis		9/21/2017
Pedigree Checklist	Rachael Andrulonis		8/16/2017
CMC Qual Test Plan (8/10/2017)	Rachael Andrulonis		8/10/2017
NCAMP Equivalency Flowchart	Rachael Andrulonis		7/19/2017
NCAMP Qualification Flowchart	Rachael Andrulonis		7/19/2017
CMC Qual Test Matrix - updated 4/19/2017	Rachael Andrulonis		4/20/2017
CMC Qual Test Matrix - for review	Rachael Andrulonis		2/28/2017
Related Research			
Related Research	Owner	Category	Modified
	Owner Rachael Andrulonis	Category	Modified 5/17/201
Title		Category	5/17/201
Title CMC enskallen for Tarbine Engines, Nasa Glenn Research)	Rachael Andrulonis	Category	
Title CMC erobation for Tarbine Engines (Mass Glenn Research) CMC Diolation & Correston Shark by MASA Glenn Research	Rachael Andrulonis Rachael Andrulonis	Category	5/17/201 5/17/201
Title CMC evolution for Tarbine Environ Mass Glenn Research CMC Oxford AC Contains Tarbine Mass Glenn Research CMC Procession Tarbine Sciences at al	Rachael Andrulonis Rachael Andrulonis Rachael Andrulonis	Category	5/17/201 5/17/201 5/17/201

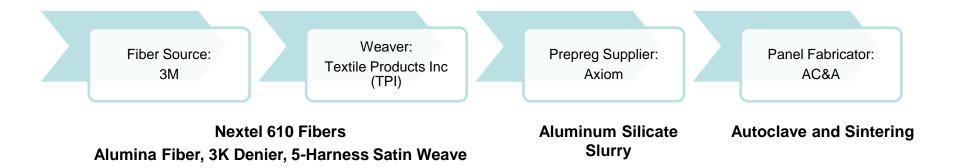
http://www.niar.wichita.edu/ncampportal/CMC/tabid/177/Default.aspx

Task 2: Development of Qualification Program

GOAL: Generate the framework for a qualification test program including material and process specifications, test matrices, and documentation requirements.

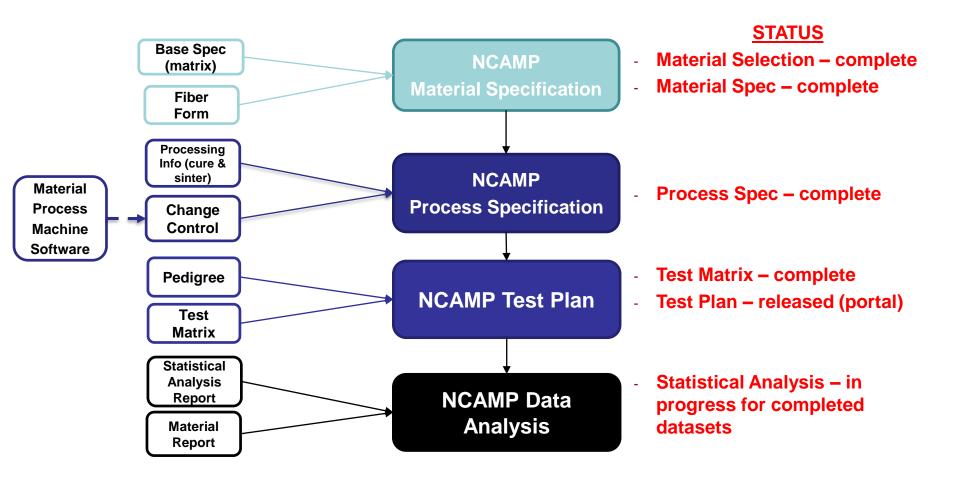
Objectives:

- Select an established <u>CMC material and process</u> to initially develop this framework. The material will be selected with input from the steering committee.
- Determine the critical process parameters and how they affect material properties.
- Address quality aspects of the selected CMC process and the framework for a quality assurance program.
- Draft material and process specifications for selected CMC material. *These will be very specific –material, material supplier, processing.*
- Develop CMC test matrix including required physical and mechanical data.
- Generate substantial mechanical property test data necessary for development of statistical guidelines using accepted test standards for CMC materials.

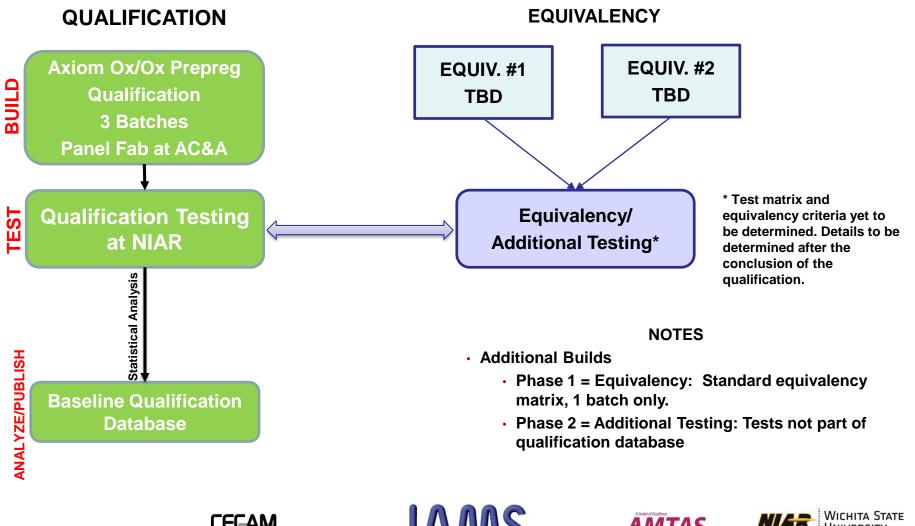


Material Selection and Process

- Prepreg production is complete
- Initial panel fabrication for 3 batch qualification is complete
- Some additional panels are being made due to quality issues with some qualification panels from the 3rd batch.
- Panel fabrication for prepreg cold storage life and out-time verification is near completion



Qualification Documentation



Qualification Program

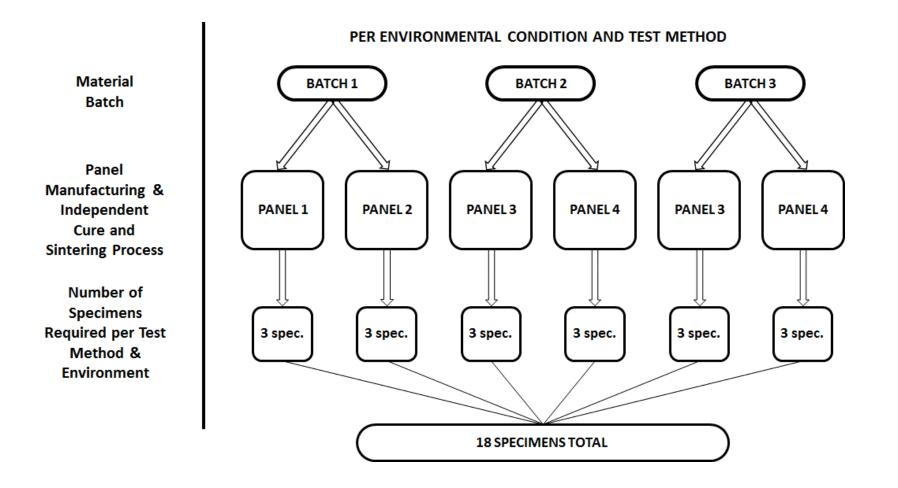
UNIVERSITY NATIONAL INSTITUTE

FOR AVIATION RESEARCH

Advanced Materials in Transport Aircraft Structure

Test Plan Overview

- Resources:
 - Steering Committee
 - PMC NCAMP test matrix
 - CMH-17 Volume 1 and 5
 - DOT/FAA/AR-03/19
 - DOT/FAA/AR-06/10
 - DOT/FAA/AR-02/110
- Selected property and/or conditions for preliminary studies



Process Definition

Cured/Sintered Physical and Thermal Tests – Test Matrix

	1	1
	Test Method	Min Replicates per
Property	(See Note 1)	Panel
NDI by Ultrasonic Through	(See Note 2)	1
Transmission (C-Scan),		
Thermography, or Radiography (CT Scan)		
Cured/Sintered Ply Thickness	ASTM D3171 (Method II)	All data from
		mechanical test
		specimens
Fiber Volume, % by Volume	ASTM D3171 (Method II)	3
	(See Note 3)	
Matrix Volume, % by Volume	ASTM D3171 (Method II)	3
	(See Note 4)	
Cured/Sintered Matrix Density	ASTM C373	3 (Total per Batch)
(See Note 5)		
Cured/Sintered Composite Density	ASTM C373	3
(See Note 6)		
Void/Porous Content	ASTM C373	3
Specific Heat (See Note 7)	ASTM E1269	3 (Total per Batch)
Thermal Conductivity	ASTM E1461	3 (See Note 9)
(Diffusivity), Measured in x, y, and		
z directions (See Note 8)		
Thermal Expansion, Measured in	ASTM E228	3 (See Note 9)
x, y, and z directions (See Note 8)		

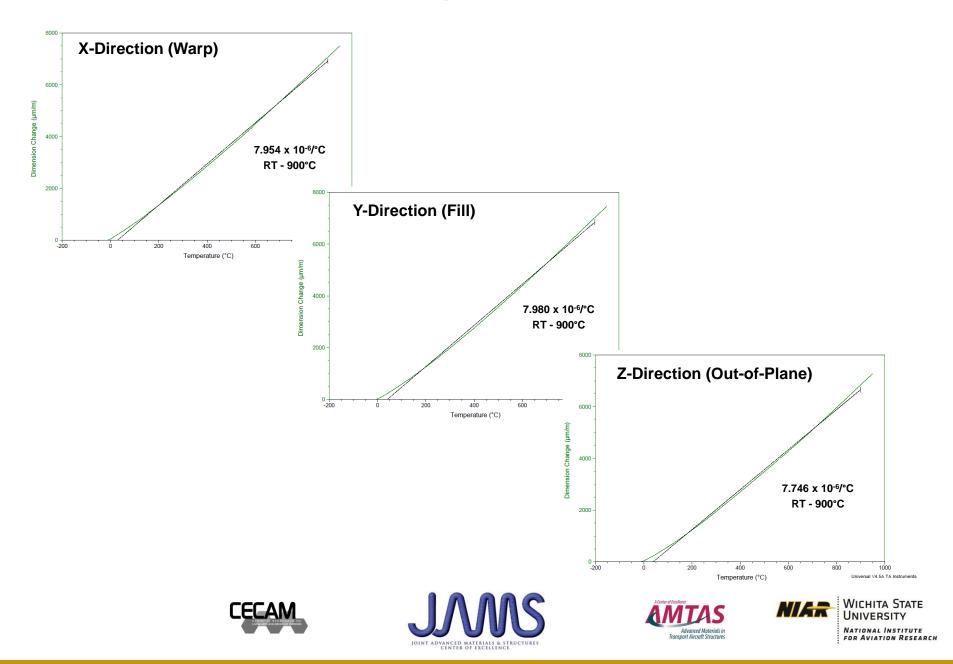
Cured/Sintered Physical and Thermal Tests – Status

QUALIFICATION REQUIREMENTS	TEST METHOD	Min Replicates per Panel Required	TOTAL QTY RQD	QTY TESTED	Percent Complete
			735	591	80%
NDI by Thermography		1	96	78	81%
Cured/Sintered Ply Thickness					
Fiber Volume, % by Volume	ASTM D3171				
Matrix Volume, % by Volume	(Method II)	3	288	234	81%
Cured/Sintered Matrix Density					
Cured/Sintered Composite Density	ASTM C373	3	288	234	81%
Void/Porous Content	Astin Cors	, , , , , , , , , , , , , , , , , , ,	200	234	61%
Specific Heat	ASTM E1269	3 (Total per Batch)	9	9	100%
Thermal Conductivity (Diffusivity), Measured in x, y, and z directions	ASTM E1461	3 (Total per Batch, per Direction)	27	9	33%
Thermal Expansion, Measured in x, y, and z directions	ASTM E228	3 (Total per Batch, per Direction)	27	27	100%

Tests complete
N/A
Additional tests required due to panel quality issues

Cured/Sintered Physical Tests – Results

Prepreg Batch	Statistic	Bulk Density <i>B</i>	Apparent Porosity <i>P</i>	Matrix Weight W_m	Fiber Volume V ,	Matrix Volume <i>Vm</i>
		[g/cm ³]	[%]	[%]	[%]	[%]
	Mean	2.6803	28.1077	42.81	39.31	32.584
	Minimum	2.6415	26.9020	41.11	36.94	31.677
Α	Maximum	2.7271	29.0032	45.46	41.11	34.65
	C.V. (%)	0.7679	1.6666	1.97	1.94	1.705
	No. of Specimens	78	78	78	78	78
	Mean	2.7188	27.3840	39.84	41.95	30.667
	Minimum	2.6289	26.1156	34.94	38.77	27.252
В	Maximum	2.7665	29.7926	43.38	45.98	33.864
	C.V. (%)	0.9828	2.5408	5.35	4.10	4.90
	No. of Specimens	78	78	78	78	78
	Mean	2.6207	29.5918	38.69	41.24	29.169
	Minimum	2.4790	26.4612	32.07	35.11	25.036
С	Maximum	2.7168	33.0816	45.01	46.16	32.216
	C.V. (%)	2.8802	7.0647	8.11	7.24	5.55
	No. of Specimens	78	78	78	78	78



Coefficient of Thermal Expansion – Results

Lamina Level Mechanical Tests – Test Matrix

				Num	ber of
				Batche	s x No.
				of Pane	ls x No.
				of Spe	cimens
				Te	est
	Test Type and Direction			Tempe	erature
Layup	(See Note 9)	Property	Test Method	RTD	ETD
[0] _{5S}	Warp Tension	Strength, Modulus,	ASTM C1275 (RTD)	3x2x3	3x2x3
	(See Notes 1, 7, 8, and 10)	and Poisson's	ASTM C1359 (ETD)		
		Ratio (RTD Only)			
[90] ₅₈	Fill Tension	Strength and	ASTM C1275 (RTD)	3x2x3	3x2x3
	(See Notes 1, 7, 8, and 10)	Modulus	ASTM C1359 (ETD)		
[0] _{6S}	Warp Compression	Strength and	ASTM C1358	3x2x3	3x2x3
	(See Notes 2, 7, 8, and 10)	Modulus			
[90] _{6S}	Fill Compression	Strength and	ASTM C1358	3x2x3	3x2x3
	(See Notes 2, 7, 8, and 10)	Modulus			
[45/-45] _{2S}	In-Plane Shear	Strength and	ASTM D3518	3x2x3	3x2x3
	(45/-45 Tension)	Modulus (RTD			
	(See Notes 3 and 8)	Only)			
[0] _{7S}	In-Plane Shear	Strength and	ASTM D5379	3x2x3	
	(V-Notch Shear)	Modulus			
	(See Notes 4 and 8)				
[0] _{7S}	Interlaminar Shear	Strength	ASTM C1292 (RTD)	3x2x3	3x2x3
	(Double-Notch Shear)		ASTM C1425 (ETD)		
	(See Note 5)				
[0] ₂₈	Interlaminar Shear	Strength	ASTM D2344	3x2x3	
	(Short-Beam Strength)				
	(See Note 6)				

RTD: 70±10°F, ETD: 1650±5°F

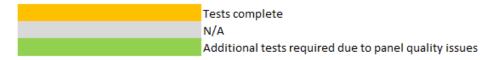
Lamina Level Mechanical Tests – Status


QUALIFICATION REQUIREMENTS	TEST METHOD	Condition Test Temperature (°F)				TD 70					ET				TOTAL QTY RQD	QTY TESTED	Percent Complete
															252	192	76%
Tensile Properties	ASTM C1275																
Tensile Strength	(RTD)	Batch		Α		В	С		Α		E	3		С			
Modulus	ASTM C1359	Warp: [0]5S	6	6	6	6	6	6	6	6	6	6	6	6	36	36	100%
Poisson's Ratio, RTD and [0] only	(ETD)	Fill: [90]5S	6	6	6	6	6	6	6	6	6	6	6	6	36	36	100%
Compressive Properties																	
	ACTN 01050	Batch		A		В	С		Α		E	3		С			
Compressive Strength	ASTM C1358	Warp: [0]6S	6	6	6	6	6	6		6		6		6	36	18	50%
Compressive Modulus		Fill: [90]6S	6	6	6	6	6	6		6		6		6	36	18	50%
In-Plane Shear Properties - 45/-45																	
Tension																	
Shear Strength	ASTM D3518	Batch		Α		В	C		Α		E	3		С			
Shear Modulus [RTD only]		[45/-45]28	3	6	6	6	6	6	3	6	6	6	6	6	36	30	83%
In-Plane Shear Properties - V-Notch Shear																	
Shear Strength	ASTM D5379	Batch		A		В	С		Α		E	3		С			
Shear Modulus		[0]75	6	6	6	6	6	6							18	18	100%

Tests complete

N/A

Additional tests required due to panel quality issues



Lamina Level Mechanical Tests – Status (Cont.)

Interlaminar Shear Properties - Double Notch Shear	ASTM C1292 (RTD)														
	ASTM C1425	Batch		Α		В	(0	Α	В	С	:			
Shear Strength	(ETD)	[0]75	6	6	6	6	6	6	6	6		6	36	18	50%
Interlaminar Shear Properties - Short-															
Beam Strength															
	ASTM D2344	Batch		Α		В	(0	Α	В	С				
Shear Strength		[0]28	6	6	6	6	6	6					18	18	100%

Laminate Level Mechanical Tests – Test Matrix

				of Panels	atches x No. x No. of mens
Layup	Test Type and Direction			Test Ten	nperature
(See Note 12)	(See Note 10)	Property	Test Method	RTD	ETD
[0] _{7S}	Flexure	Strength and	ASTM C1341	3x2x3	
	(See Notes 1, 9, and 11)	Modulus			
[0] ₁₀	Interlaminar Tension (Trans-	Strength	C1468	3x2x3	
	Thickness/ Flatwise Tension)				
	(See Note 2)				
[0/90] ₅	Interlaminar Tension (Trans-	Strength	C1468	1x1x6	
	Thickness/ Flatwise Tension)				
	(See Note 2)				
[0/90] ₁₄	Interlaminar Shear	Strength	ASTM D2344	1x1x6	
	(Short-Beam Strength)				
[45/0/-45/90/-45/90] _s	Unnotched Tension	Strength and	ASTM C1275 (RTD)	3x2x3	3x2x3
	(See Notes 3, 9, and 11)	Modulus	ASTM C1359 (ETD)		
[45/0/-45/90/-45/90] _s	Unnotched Compression	Strength and	ASTM C1358	3x2x3	3x2x3
_	(See Notes 4, 9, and 11)	Modulus			
[45/0/-45/90] ₂₈	Open-Hole Compression	Strength	ASTM D6484	3x2x3	3x2x3
	(See Notes 5 and 11)				
[45/0/-45/90/-45/90] _s	Open-Hole Tension	Strength	ASTM D5766	3x2x3	3x2x3
	(See Notes 6 and 11)				
[45/0/-45/90/-45/90] _S	Filled-Hole Tension	Strength	ASTM D6742	3x2x3	3x2x3
	(See Notes 7 and 11)				
[45/0/-45/90/-45/90] _s	Single Shear Bearing	Strength	ASTM D5961	3x2x3	3x2x3
	(See Note 11)		(Procedure C)		
[45/0/-45/90/-45/90] _s	Tension After Impact	Strength	ASTM D7136	1x2x3	1x2x3
	(See Notes 8 and 11)		ASTM D5766		

RTD: 70±10°F, ETD: 1650±5°F

Laminate Level Mechanical Tests – Status

QUALIFICATION REQUIREMENTS	TEST METHOD	Condition Test Temperature (°F)	Condition RTD ETD Test Temperature (°F) 70 1650									TOTAL QTY RQD	QTY TESTED	Percent Complete			
	•														291	207	71%
Flexure																	
Strength	ASTM C1341	Batch		Α		В		С	Α		I	В		С			
Modulus		[0]75	6	6	6	6	6	6							18	18	100%
Interlaminar Tension (Trans- thickness/flatwise tension)																	
	ASTM C1468	Batch		Α		в		С	Α		I	в		С			
]	[0]10	6	6	6	6	6	6							18	18	100%
Strength		[0/90]5	6	6											6	6	100%
Interlaminar Shear - Short Beam Strength																	
	ASTM D2344	Batch		Α		В		С	Α		I	в		С			
Strength]	[0/90]14	6	6											6	6	100%
Unnotched Tension	ASTM C1275																
Strength	(RTD)	Batch		Α		в		С	Α		I	в		с			
Modulus	ASTM C1359 (ETD)	[45/0/-45/90/-45/90]S	6	6	6	6	6	6	6	6	6	6	6	6	36	36	100%

Tests complete N/A Additional tests required due to panel quality issues

Laminate Level Mechanical Tests – Status (Cont.)

Unnotched Compression																	
Strength	ASTM C1358	Batch		Α		В	(C	A	4	I	В		С			
Modulus		[45/0/-45/90/-45/90]S	6	6	6	6	6	6		6		6		6	36	18	50%
Open-Hole Compression																	
	ASTM D6484	Batch		Α		В	0	0	A	4	1	В		С			
Strength		[45/0/-45/90]2S	6	6	6	6	6	6		6		6		6	36	18	50%
Open-Hole Tension																	
	ASTM D5766	Batch		Α		В	0	0	A	4	- I	В		С			
Strength		[45/0/-45/90/-45/90]S	6	6	6	6	6	6	6	6	6	6	6	6	36	36	100%
Filled-Hole Tension																	
	ASTM D6742	Batch		Α		В	(C	A	4		В		С			
Strength		[45/0/-45/90/-45/90]S	6	6	6	6	6	6	6	6	6	6	6	6	36	36	100%
Single-Shear Bearing																	
	ASTM D5961 (Procedure C)	Batch		Α		в	(0	A	4		в		С			
Strength	(FIOCEdure C)	[45/0/-45/90/-45/90]S	6	6	3	3	6	6							15	15	100%

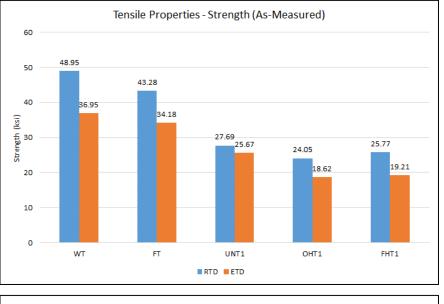
Tests complete N/A

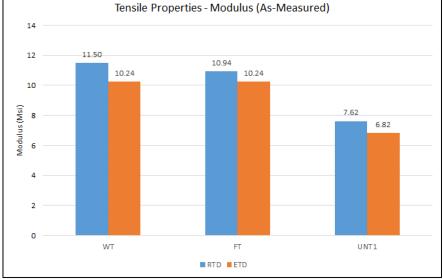
Additional tests required due to panel quality issues

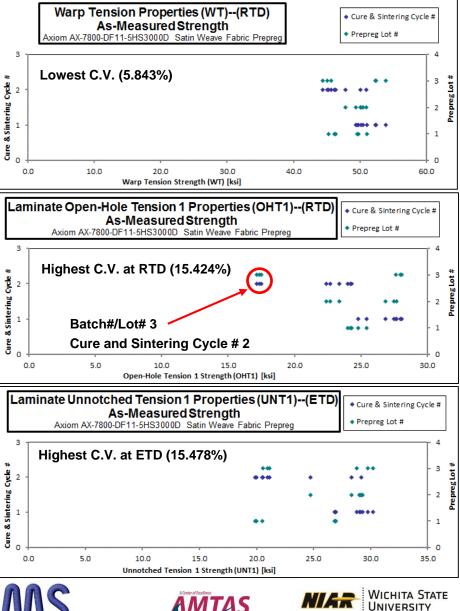
Laminate Level Mechanical Tests – Status (Cont.)

Double-Shear Bearing														
	ASTM D5961 (Procedure A)	Batch	1	A	В	С	Α	E	8	0				
Strength	(Hocedure A)	[45/0/-45/90/-45/90]S		6	6	6	6		6		6	36	0	0%
Tension After Impact														
	ASTM D7136 ASTM D5766	Batch	[)			D							
Strength	A516 05700	[45/0/-45/90/-45/90]S		6			6					12	0	0%

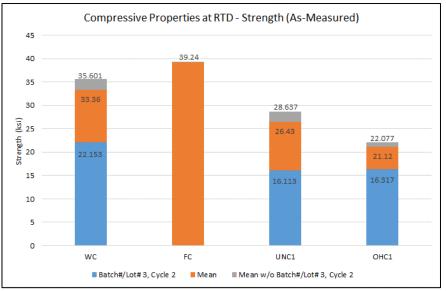
Tests complete N/A Additional tests required due to panel quality issues

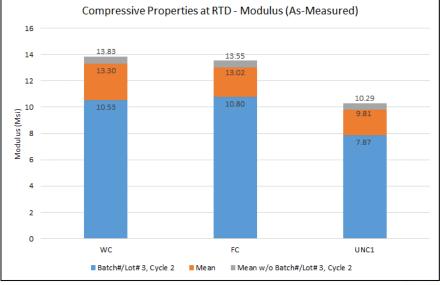


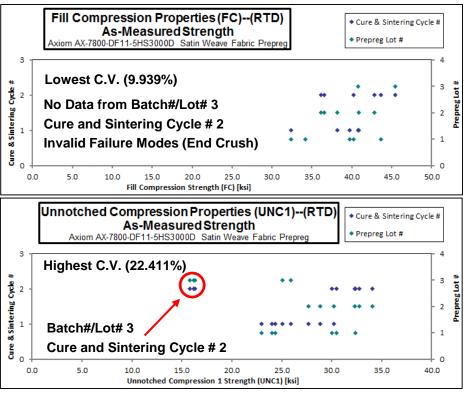




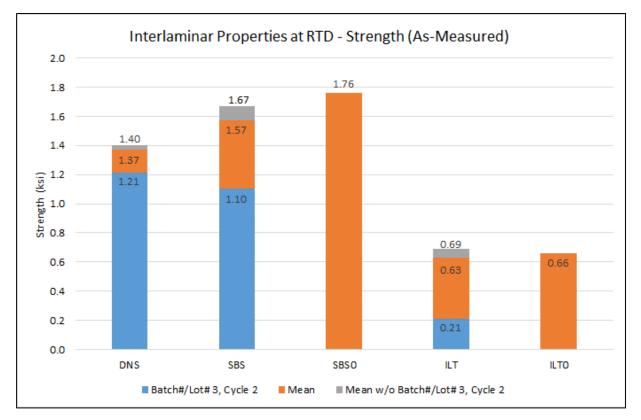
In-Plane Tensile Properties – Results


Advanced Materials in Transport Aircraft Structures NATIONAL INSTITUTE


FOR AVIATION RESEARCH



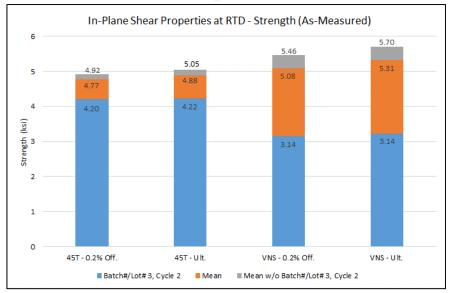
In-Plane Compressive Properties – Results

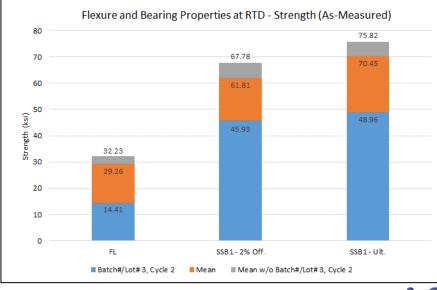


Interlaminar Properties – Results

C.V. for the interlaminar properties

- DNS: 19.015%
- SBS: 18.663%
- SBS0: 2.105%
- ILT: 27.416%
- ILT0: 6.464%





Other Properties – Results

C.V. for the interlaminar properties

- 45T 0.2% Off.: 13.080%
- 45T Ult.: 13.137%
- VNS 0.2% Off. : 29.600%
- VNS Ult.: 29.365%
- FL: 27.377%
- SSB1 2% Off.: 17.739
- SSB1 Ult.: 16.620

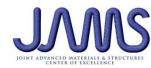
Other Test Types Included

- Fluid Sensitivity Tests
 - Exposure to fluids such as fuel, oils, sea water, deicing fluid, rain water, tap water, and engine cleaner
 - Short beam strength testing at room temperature for fluids
 - Short beam strength testing at room temperature for selected fluids after post-immersion conditioning at 1650°F for a minimum of 60 minutes
- Cold Storage and Out-Time Verification
 - Refrigerator Storage Intervals: as manufactured, 6 months and 12 months
 - Out-Time Intervals: 1 day, 7 days, 14 days, 28 days, and 42 days
 - Physical Tests: Volatile Content / Mass Loss, Flow, Tack and Drape
 - Mechanical Tests: Fill Tension

Task 4: Guidelines and Recommendations

GOAL: To provide guidelines to industry for the collection of statistically meaningful critical data that designers need to utilize CMC materials potentially including:

- Creation of a shared CMC database including test data, material and process specifications and statistical analysis methods.
- Development of handbook data and guidelines (i.e., CMH-17).
- Coordinate with other standards and specification organizations to develop specifications from this program.



Overall Program Status

	Activity	Target Date	Milestone / Deliverable	Complete?
1.2	Industry Steering Committee - Establish group of participants - Create online portal for document sharing and data repository	12/15/2016	Milestone	✓
1.3	Preliminary drafts of qualification framework - Material and process specifications - Test plan - Conformity documentation	6/30/2017	Deliverable	\checkmark
1.4	Qualification Audit	11/10/2017	Milestone	~

Overall Program Status

	Activity	Target Date	Milestone / Deliverable	Complete?
1.1	 Trial / Screening Studies (ongoing) Perform physical and mechanical tests to assist in final test matrix development and selection of machining and NDI methods Present data to FAA, Industry Steering Committee, NCAMP Partners 	1/15/2018	Milestone	•
1.2	 Qualification Material Site audit complete (scheduled for 11/7-11/8/2017) Initial set of qualification panels built and delivered to NIAR Additional panels being built replace poor quality panels from material batch 3. 	7/31/2019	Milestone	Panels in progress
1.3	Qualification Testing - Perform physical, thermal and mechanical testing on qualification panels - Generate test data for qualification program	9/30/2019	Milestone	Testing in progress
1.4	Develop Statistical Guidelines based on qualification data	10/31/2019	Milestone	Statistical analysis in progress
1.5	NCAMP Reports on Qualification Data - Material technical report - Statistical analysis technical report	10/31/2019	Deliverable	
1.6	CMH-17 - Submit content, data, and protocols to Composite Materials Handbook 17 (CMH-17)	11/30/2019	Deliverable	
1.7	Final Report - Final Technical Report on the Guidelines for CMC Qualification	11/30/2019	Deliverable	

Looking forward

- Benefit to Aviation
 - Publically available CMC data linked to M&P specs
 - Addition to CMH-17 handbook
 - CMC PCD and process spec guidelines
- Future needs
 - Validate qualification data with equivalencies
 - Trial studies needed:
 - Processing effects on CMCs
 - SiC/SiC or C/SiC composites
 - Effects of thermal and environmental barrier coating

Questions?

Don't forget to fill out the feedback form in your packet or online at www.surveymonkey.com/r/jamsfeedback

Thank you.

Advanced Materials in Transport Aircraft Structures

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE

Backup Slide 1 - Fluid Sensitivity Tests

	Exposure by	Post-Immersion	Test	
Extended Contact:	Immersion	Conditioning	Condition	Code
ASTM D1655 Jet A Fuel (other jet	90 days min. at	Stored per Note 1	70°F	FS11RT
fuel may be used but its type must be	70±10°F	60 minutes min. at	70°F	FS41RT
reported)		1650±5°F (See Note 2)		
MIL-PRF-5606 Hydraulic Oil	90 days min. at 70±10°F	Stored per Note 1	70°F	FS12RT
MIL-PRF-6083 Hydraulic Oil	90 days min. at 70±10°F	Stored per Note 1	70°F	FS13RT
MIL-PRF-87257 Hydraulic Oil	90 days min. at	Stored per Note 1	70°F	FS14RT
	70±10°F	60 minutes min. at	70°F	FS44RT
		1650±5°F (See Note 2)		
MIL-PRF-7808 Engine Oil	90 days min. at 70±10°F	Stored per Note 1	70°F	FS15RT
MIL-PRF-23699, Class STD Engine Oil	90 days min. at 70±10°F	Stored per Note 1	70°F	FS16RT
Sea Water (ASTM D1141 or equiv.)	90 days min. at	Stored per Note 1	70°F	FS17RT
	70±10°F	60 minutes min. at	70°F	FS47RT
		1650±5°F (See Note 2)		
Skydrol LD-4 (SAE AS1241, Type	90 days min. at	Stored per Note 1	70°F	FS18RT
IV, Class 1)	70±10°F	60 minutes min. at	70°F	FS48RT
		1650±5°F (See Note 2)		
50% DI Water with 50% Skydrol LD-	Water with 50% Skydrol LD- 90 days min. at Stored per		70°F	FS19RT
4 (SAE AS1241, Type IV, Class 1)	70±10°F			
Rain Water (Acidic – pH of 3)	90 days min. at 70±10°F	Stored per Note 1	70°F	FS1ART
Tap Water (Iron Content $\approx 0.3 \text{ mg/L}$)	90 days min. at 70±10°F	Stored per Note 1	70°F	FS1BRT
Short Duration Contact:		-		
TURCO 4181-L Engine Cleaner	90 minutes min. at 70±10°F	Stored per Note 1	70°F	FS21RT
Polypropylene Glycol Deicer (Type I,	90 minutes min. at	Stored per Note 1	70°F	FS22RT
SAE AMS 1424)	70±10°F	60 minutes min. at	70°F	FS53RT
		1650±5°F (See Note 2)		
Control Tests:				
Distilled Water	90 days min. at	Stored per Note 1	70°F	FS31RT
	70±10°F			
Dry	Per section 6.1	Stored per Note 1	70°F	FS32RT
		60 minutes min. at 1650±5°F (See Note 2)	70°F	FS62RT

Note 1: Specimens do not require post-immersion conditioning. Specimens shall be stored inside of a sealed bag at 70±10°F until testing begins.

Note 2: Specimens shall be conditioned for 60 minutes min. at 1650±5°F in air. After specimens have been conditioned, they shall be stored inside of a sealed bag at 70±10°F until testing begins.

