

Inspection and Teardown of **Aged In-Service Bonded Repairs**

2016 Technical Review

Waruna Seneviratne, John Tomblin, and Brandon Saathoff

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Inspection and Teardown of Aged In-Service Bonded Repairs

NIAR

Waruna Seneviratne, PhD John Tomblin, PhD

Brandon Saathoff

NATIONAL INSTITUTE FOR AVIATION RESEARCH

FAA

Ahmet Oztekin, PhD (Technical Monitor) Larry Ilcewicz, PhD **Rusty Jones** David Westland

SNL

Stephen Neidigk

WICHITA STATE UNIVERSITY

NATIONAL INSTITUTI

MAR.

Research Team

Program Overview

- The increased use of bonded applications in critical structures raises the concerns related to process sensitivity of the bondline, because an improperly accomplished in-service repair could become a safety threat due to weak bond that is susceptible for further degradation in an unpredictable manner due to operational environments and ground-air-ground (GAG) thermo-mechanical loads.
 - Therefore, long-term durability under operational environments and GAG loading must be understood and the aging mechanism must be investigated to support maintenance practices and to establish criteria for structural retirement.
 - Detailed nondestructive inspections (NDI), teardown inspections, and laboratory testing of bonded repairs on aircraft components that have been retired from service provide vital information related to the aging mechanism and any undetected material degradation.
 - Several decommissioned structural members, both metal and composites, with multiple repairs will be subjected to
 detailed inspections and cyclic loading in order to determine the remaining life of those repairs.
- The main goal of this research program is to evaluate bondline integrity and durability of in-service repairs on composite structures in commercial aircraft in order to provide guidance into AC 65-33 (Development of Training/Qualification Programs for Composite Maintenance Technicians) and AC 43-214 (Repairs and Alterations to Composite and Bonded Aircraft Structure)

Technical Approach

- Phase 1: Acquisition of Aircraft Components with Documented Repairs
- Phase 2: Detailed inspections at Sandia National Lab (SNL)
 - Upon completion of NDI, SNL will ship components to NIAR along with detailed NDI reports.
- Phase 3:
 - Teardown inspections
 - Assess the quality of the bonded repairs
 - Document findings related to repair integrity and viability on NDI methods
 - Detailed inspections, strain surveys, and material testing during cyclic testing of component/element testing are intended to provide insight into assessing current standard inspection methods to detect material degradation/wearout.
- Phase 4: Documentation of findings
 - Research team will engage in CACRC and CMH-17 activities related to guidance materials and training/qualification programs for composite maintenance technicians and certification approaches

B767-300 Components

Component #	Tail #	Repaired Component	Flight Hours	$\int \mathcal{T} \mathcal{T}$
1	N135DL	Elevator, Left O/B	13,324	
7	N135DL	Elevator, Left I/B	13,324	
2	N135DL	Elevator, Right I/B	13,324	Component 15
3	N135DL	Elevator, Right O/B	13,324	
4	N135DL	Spoiler, NR 11	13,324	Component 13
5	N135DL	Flap, Left O/B	13,324	\square
6	N135DL	Flap, Right I/B	13,448	
10	N135DL	Flap, Right O/B	13,324	Component 1
ws	CEC	AM		Component 3 Component 4 Component 14

B757-200 Components

Component #	Tail #	Repaired Component	Flight Hours
8	N531US	Slat, NR 9*	72,679
9	N503US	Slat, NR 6	85,359
11	N531US	Slat, NR 8*	72,679
12	N629DL	Horizontal Stabilizer	75,316
30	N648DL	Flap, Right I/B	

Review Engineering Repair Authorization Forms

Graphite

Graphite

11

Component – 1st Shipment to NIAR

- NIAR received Components *1, 2, 13, and 14* from Sandia
 - Need to discuss receiving NDI results from Sandia on these components so that educated decisions can be made on a detailed test plan
 - Lacking SRM's for B757-200 components

	Component No. (Sandia Naming)	Tail No.	Aircraft	Aircraft Construction No. (MSN)	Aircraft Line No.	Repaired Component
×	1	N135DL	B767-300	25145	356	Flap, Right I/B
	2	N648DL	B757-200	24372	223	Flap, Right I/B
	3	N135DL	B767-300	25145	356	Elevator, Left I/B
	4	N135DL	B767-300	25145	356	Elevator, Left O/B
	9	N135DL	B767-300	25145	356	Elevator, Right O/B
\mathbb{N}	12	N135DL	B767-300	25145	356	Elevator, Right I/B
	13	N135DL	B767-300	25145	356	Flap, Right O/B
X	14	N135DL	B767-300	25145	356	Flap, Left O/B
	15	N135DL	B767-300	25145	356	Spoiler, NR 11
	19	N503US	B757-200	23192	59	Slat, NR 6
	20	N531US	B757-200	23846	190	Slat, NR 8
	21	N531US	B757-200	23846	190	Slat, NR 9
M	25	N629DL	B757-200	22919	134	Horizontal Stabilizer Section

Component 1

B767-300 Flap, Right I/B

	Component 1 (767-300)								
Repair	Size	Host Skin Material	Host Core Material	Repair Material	Location				
1a	ů5.00"	2024-T3 Ahminum	Aluminum Honeycomb	2024-T3 Aluminum	Top Side				
1b	ů4.25"	2024-T3 Aluminum	Aluminum Honeycomb	2024-T3 Aluminum	Top Side				
1c	≈ 47.5" x 11.0"	2024-T3 Ahminum	Aluminum Honeycomb	2024-T3 Ahumimum	Top Side				
1d	ů4.25"	2024-T3 Aluminum	Aluminum Honeycomb	2024-T3 Aluminum	Top Side				
1e	ů5.25"	2024-T3 Ahminum	Aluminum Honeycomb	2024-T3 Ahumimum	Top Side				
1f	≈ 9.5" x 5.5"	2024-T3 Aluminum	Aluminum Honeycomb	2024-T3 Aluminum	Top Side				
1~	ů3.50"	2024-T3 Aluminum w/	A huming the party and	2024-T3 Aluminum w/ Aramid Epoxy	Dottom Side				
lg		Aramid Epoxy Outer Plies	Alumnum Honeycomb	Outer Plies	Bottom Side				

767 Structures, Boeing Commercial Airplanes Group, 1991.

Component 1 – B767-300 I/B Flap (RH)

• 7 Repairs

	Component 1 (767-300)									
Repair	Location	Size	Host Skin Material	Host Core Material	Host Film Adhesive	Repair Material	Repair Core	Repair Film Adhesive		
1a	Top Skin	ů5.00''	2024-T3 Aluminum	Aluminum	-	2024-T3 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657		
1b	Top Skin	ů4.25"	2024-T3 Aluminum	Aluminum	-	2024-T3 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657		
1c	Top Skin	≈ 47.5 " x 11.0"	2024-T3 Aluminum	Aluminum	-	2024-T3 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657		
1d	Top Skin	ů4.25"	2024-T3 Aluminum	Aluminum	-	2024-T3 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657		
1e	Top Skin	ů5.25"	2024-T3 Aluminum	Aluminum	-	2024-T3 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657		
1f	Top Skin	≈ 9.5" x 5.5"	2024-T3 Aluminum	Aluminum	-	2024-T3 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657		
1g		ů3.50''	2024-T3 Aluminum w/	Aluminum		2024-T3 Aluminum w/	A huminum Honorcomh	AE162 OK /EA 0657		
	Lower Skin		Aramid Epoxy Outer Plies	Honeycomb	-	Aramid Epoxy Outer Plies	Aluminum Honeycomb	AF103-2K / EA 9057		

Component 1 – Subpanel Extraction (Metallic)

- Need to verify if Aramid/Epoxy outer ply exists on lower skin.
 - If this is the case, repair 1g will not be considered.
 - These repairs have significant curvature near leading edge.

Component 13

B767-300 Flap, Right O/B

	Component 13 (767-300)									
Repair	Size	Host Skin Material	Host Core Material	Repair Material	Location					
13a	ů4.75"	7075-T6 Aluminum	Aluminum Honeycomb	7075-T6 Aluminum (non-clad)	Top Side					
13b	≈ 6.5" x 4.75"	7075-T6 Aluminum	Aluminum Honeycomb	7075-T6 Aluminum (non-clad)	Top Side					
13c ≈ Ø4.50"	~ (24.50"	2024-T3 Ahminum, 7075-T6	A hypericana II anarra amh	2024-T3 Ahuminum, 7075-T6 Ahuminum	Dottom Side					
	≈ Ø4.30*	Aluminum	Alumnum Honeycomb	(non-clad)	Bouom Side					

Component 13 – B767-300 O/B Flap (RH)

• 3 Repairs

	Component 13 (767-300)									
Repair	Location	Size	Host Skin Material	Host Core Material	Host Film Adhesive	Repair Material	Repair Core	Repair Film Adhesive		
13a	Top Skin	ů4.75"	7075-T6 Aluminum	Aluminum Honeycomb	-	7075-T6 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657		
13b	Top Skin	≈ 6.5" x 4.75"	7075-T6 Aluminum	Aluminum Honeycomb	-	7075-T6 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657		
13c	Lower Skin	ů4.50"	2024-T3 Aluminum	Aluminum Honeycomb	-	2024-T3 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657		

Component 13 - Subpanel Extractions

Section 1 (Metallic)

Section 2 (Metallic)

Component 14

B767-300 Flap, Left O/B

	Component 14 (767-300)								
Repair	Size	Host Skin Material	Host Core Material	Repair Material	Location				
14a	ů5.50"	7075-T6 Aluminum	Aluminum Honeycomb	7075-T6 Aluminum (non-clad)	Top Side				
14b	ů6.00"	7075-T6 Aluminum	Aluminum Honeycomb	7075-T6 Aluminum (non-clad)	Top Side				
14c	≈ 9.5 " x 6.0"	7075-T6 Aluminum	Aluminum Honeycomb	7075-T6 Aluminum (non-clad)	Top Side				
14d	≈ 10.5" x 7.0"	7075-T6 Aluminum	Aluminum Honeycomb	7075-T6 Aluminum (non-clad)	Top Side				
14e	ů7.00"	7075-T6 Aluminum	Aluminum Honeycomb	7075-T6 Aluminum (non-clad)	Top Side				
14f	ů6.00"	7075-T6 Aluminum	Aluminum Honeycomb	7075-T6 Aluminum (non-clad)	Top Side				
14a	$\sim 60'' \times 10''$	Fiberglass/Epoxy (TE Wedge	Nomey Honeycomb	Fiberglass/Epoxy (TE Wedge Assembly	Bottom Side				
14g	≈ 00 X 19	Assembly Only)	Noniex Honeyconio	Only)	Douolli Side				
1.4h	$\sim 22'' \times 10''$	Fiberglass/Epoxy (TE Wedge	Nomer Heneraemh	Fiberglass/Epoxy (TE Wedge Assembly	Dottom Side				
14f1	$\approx 23^{\circ} \times 10^{\circ}$	Assembly Only)	nomex noneycomb	Only)	Bottom Side				

Airplanes Group, 1991.

Component 14 – B767-300 O/B Flap (LH)

	Component 14 (767-300)								
Repair	Location	Size	Host Skin Material	Host Core Material	Host Film Adhesive	Repair Material	Repair Core	Repair Film Adhesive	
14a	Top Skin	ů5.50"	7075-T6 Aluminum	Aluminum Honeycomb	-	7075-T6 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657	
14b	Top Skin	ů6.00''	7075-T6 Aluminum	Aluminum Honeycomb	-	7075-T6 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657	
14c	Top Skin	≈ 9.5" x 6.0"	7075-T6 Aluminum	Aluminum Honeycomb	-	7075-T6 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657	
14d	Top Skin	≈ 10.5" x 7.0"	7075-T6 Aluminum	Aluminum Honeycomb	-	7075-T6 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657	
14e	Top Skin	ů7.00''	7075-T6 Aluminum	Aluminum Honeycomb	-	7075-T6 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657	
14f	Top Skin	ů6.00''	7075-T6 Aluminum	Aluminum Honeycomb	-	7075-T6 Aluminum	Aluminum Honeycomb	AF163-2K / EA 9657	
14g	Lower Skin on TE Wedge	≈ 60" x 19"	Fiberglass/Epoxy	Nomex Honeycomb	-	Fiberglass/Epoxy	Nomex Honeycomb	Wet Layup	
14h	Lower Skin on TE Wedge	≈ 23" x 10"	Fiberglass/Epoxy	Nomex Honeycomb	-	Fiberglass/Epoxy	Nomex Honeycomb	Wet Layup	

Component 14 - Subpanel Extractions

Component 14 – Section 1

Component 14 – Section 2

Component 14 – Section 3

Component 14 – Section 1 TTU C-Scan

Component 14 – Section 2 & 3 TTU C-Scans

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Example Specimen Layout (Component 14)

Section 1 (Metallic)

Challenge - Limited # of Specimens

Component 14 - Subpanel Extractions (Composite)

 Limited repeatability. These materials are not used on any other repairs we have.

NIAR Actions

• <u>Teardown inspections</u>

- Extract sections with **repairs**
- Inspections
 - Visual, Pulse thermography, Ultrasonic, ..
 - SEM, Photomicrographs
 - X-ray CT
- Thermal and physical test
 - Void content/porosity
 - Glass transition temperature (DMA), degree of cure (DSC)
 - Residual moisture
- Coupon/element extraction for mechanical tests
 - Compression, Flexure, Flatwise tensile
 - Fracture toughness
 - Picture-frame shear

Mechanical Testing

- Develop individual test plans for each component test
- Identify test sections/areas of interest
 - Extraction strategies
- Testing (FSFT)
 - Fixturing
 - Instrumentation
 - Whiffletrees and load spectrum Inspection intervals & techniques
 - Runout → residual strength
 - Teardown inspections
- Data reporting
 - FAA final report
 - CMH-17, CACRC

Inspection of Large Articles

X-ray CT

Ultrasonic C-Scan

Mechanical Testing

- Develop a test plan based on NDI findings
 - Component testing
 - Element testing
 - Coupon testing
- Teardown inspections
 - Coupons/elements will be extracted for thermal, mechanical, and physical tests
 - Various NDI techniques will be used to assess repair integrity

Element Level Testing

Test Methods

- **ASTM C297** Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions
 - Standard Specimen Size: Depends on cell size of honeycomb core (likely 2" x 2")

Minimum Cell Size (mm [in.])	Maximum Cell Size (mm [in.])	Minimum Loading Block Dimension W (mm [in.])	Minimum Facing Area (mm² [in.²])
- 3.0 [0.125]	3.0 [0.125] 6.0 [0.250]	25 [1.0] 50 [2.0]	625 [1.0] 2500 [4.0]
6.0 0.250	9.0 [0.375]	75 [3.0]	5625 [9.0]

TABLE 1 Recommended Minimum Specimen Facing Area and Loading Block Dimensions

- **ASTM D3762** Standard Test Method for Adhesive-Bonded Surface Durability of Aluminum (Wedge Test)
- **ASTM D3433** Standard Test Method for Fracture Strength in Cleavage of Adhesives in Bonded Metal Joints
- DSC / Tg
- Photomicrographs

Important to consider influence of the geometry of test specimens on test methodologies. This includes curvature and thickness.

Status

- Sandia shared the NDT results of the first batch of parts they shipped to NIAR (3/2/17).
 - This shipment included two I/B Aft Flaps (B767-300 shipset), one O/B Flap (B767-300), and one I/B Flap (B757-200)
 - NIAR visited SNL on December 13 for planning meeting
- NIAR will extract coupons from these four components
 - This exercise will provide an opportunity to identify potential technical challenges and develop solutions until new parts with composite repairs arrive
- FAA Tec Center is shipping two B767-300 spoilers to NIAR
 - Per SRM, repairs on these spoilers have graphite/epoxy prepreg fabric as surface material and nonmetallic honeycomb as core
 - Additionally, Sandia has two more spoilers from the same airplane
 - Access to the applicable SRM pages is needed to verify surface and core material of the B757 parts and the B767 aileron currently located at the FAATC and Sandia
- Pursuing efforts to acquire additional parts with composite-on-composite repairs

Looking Forward

Benefit to Aviation

- Evaluation of bondline integrity and durability of in-service repairs on composite structures in commercial aircraft
- Guidance materials for AC 65-33 (Development of Training/Qualification Programs for Composite Maintenance Technicians) and AC 43-214 (Repairs and Alterations to Composite and Bonded Aircraft Structure)

Future needs

- Composite tests articles with composite repairs
- Technical guidance on repair materials and techniques used on acquired test articles
- Information on stress level and loading modes on repair regions

