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• Motivation and Key Issues 
– Adhesive bonding is a key path towards reduced weight in aerospace structures.

– Certification requirements for bonded structures are not well defined.

• Objective
– Explore cyclic response of adhesive joints.

– Develop predictive models describing adhesive time and plastic response.

• Approach
– Experiments designed to clarify constitutive relations.

– Develop FEA Models of adhesive bonds.

– Compare models with experiments that are unlike constitutive tests.



Review: Bulk Coupon, EA9696

20% UTS

50% UTS

80% UTS

Ratcheting triangle wave



Viscoelastic Response in Shear

Bulk Tension End Notch Flexure

(unnotched)

Wide Area Lap Shear
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Why Scarf Joint?
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FEA Results :

• Scarf has no load eccentricity

• Scarf has a uniform distribution of shear 

stress

• Scarf has minimal peel stress
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Measuring Cyclic strain

 Thin bond prevents traditional direct methods

 Extensometer tends to drift with cyclic loading

 DIC is computationally expensive

 Shear modulus gage not available

 Considered a stacked rosette

 Maximum strain not sensitive to gage orientation



Scarf Coupon

EA9696



Strain Modifications

ε1

ε2

ε3

• Divided each strain by the percentage of the gage covering the adhesive

• Strain Gauge Area: 0.064in x 0.05in

• Adhesive Thickness: 0.008in

ε’1= ε1a/t ε’2= ε2a cos(45
o
)/t ε’3= ε3b/t

γxy = 2ε’2-ε’1-ε’3
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Monotonic Testing Results
 Ultimate Shear Strength (USS): 6 ksi

 Adhesive Shear Modulus: 88.5 ksi

 Verified through digital imaging correlation

Elastic Region 



Creep Testing

• 50% USS



Change in Frequency

• 20% USS

• 0.1 R

• Sine Wave

Ratcheting Recovery



Change in Frequency

RecoveryRatcheting

• 50% USS

• 0.1 R

• Sine Wave



Change in R Ratio 

Change in Strain

Ratcheting

• 20% USS

• 3 Hz

• Sine Wave

Recovery



Inverted Sine Wave

Ratcheting

• 20% USS

• 3 Hz

• -1 R

Recovery

Ratcheting



Stress-Strain Hysteresis Loop
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Change in R Ratio

Ratcheting Ratcheting and Recovery

• 50% USS

• 3 Hz

x

• Sine Wave
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50% USS 

-1 R

Ratcheting

Ratcheting

Monotonic

Ratcheting until Failure



Questions

 50% UTS, R=0.1 (compression)

 Similar cyclic and permanent strain as in tension?

 Do WALS coupons have response similar to scarf joints?

 They also have tension at free edges

 Is strain growth associated with material softening (i.e. damage)?

 We can now measure modulus during a cyclic test

 Is the maximum shear angle a measure of damage? 

 We need more data

 What can the failure surface tell us?

 Adhesive failure vs. primer failure



Test Matrix

EA9696    0.1 R   10,000 Cycles EA9696 3 Hz  10,000 Cycles

Frequency (Hz) R ratio

0.05 3.00 5.00 -1.00 -0.50 0.10 0.90

Stress 
(% Ultimate 

Shear Strength)

80% 0/3 0/3 0/3
Stress 

(% Ultimate 
Shear Strength)

50% 2/3 1/3 2/3 1/3

50% 2/3 2/3 1/3 20% 3/3 2/3

20% 1/3 2/3

FM300-2    0.1 R  10,000 Cycles FM300-2    3 Hz   10,000 Cycles

Frequency (Hz) R ratio

0.05 3.00 5.00 -1.00 -0.50 0.10 0.90

Stress 
(% Ultimate 

Shear Strength)

80% 0/3 0/3 0/3
Stress 

(% Ultimate 
Shear Strength)

50% 0/3 0/3 0/3 0/3

50% 0/3 0/3 0/3 20% 0/3 0/3

20% 0/3 0/3

Finished In Progress Not Started



Nonlinear Viscoplastic Model

• History Models

ABAQUS Models

•Two-layer viscoplasticity

•Linear viscoelasticity

•Parallel Rheological 
Framework

ABAQUS User 
Subroutine + UMAT

• 𝜀 𝑡 =

∞−׬
𝑡
𝐷0𝑒

𝑡−𝜏

𝑡0

𝑚

ሶ𝜎 𝜏 ⅆ𝜏

UMAT

•Nonlinear 
Viscoelasticity + 
Nonlinear Plasticity

• No time-dependent 

for recovery stage

• No permanent strain

• Bad prediction for 

long term creep and 

recovery strain

• No time-dependent 

for recovery stage



Popular Nonlinear Viscoplastic Models

Viscoplastic Models Comparison
• Raghava Model

𝑓 =
𝜂−1 𝐼1+ 𝜂−1 2𝐼1

2+12𝜂𝐽2

2𝜂
− 𝜎𝑡 − 𝑅 𝑘

𝜂 – viscosity parameter
𝜎𝑡 - yield stress in uniaxial tension
𝑅 𝑘 - hardening rule

• Zapas- Crissman Model

𝜀𝑣𝑝 = 𝐶න
0

𝑡

𝜎𝑁 ⅆ𝜏

𝑀

𝐶, 𝑁, 𝑀 – temperature dependent parameters

• Both models had limited ability to describe plasticity.



Nonlinear Viscoplastic Model

Total Strain:

ε = 𝜀𝑣𝑒 + 𝜀𝑣𝑝

VE- Schapery Model

𝜀𝑣𝑒 𝑡 = 𝑔0𝐷0𝜎
𝑡 + 𝑔1 0׬

𝑡
∆𝐷 𝜓𝑡−𝜓𝜏 𝑑 𝑔2𝜎

𝜏

𝑑𝜏
ⅆ𝜏

𝜓𝑡 =
𝑡

𝑎

Δ𝐷𝜓𝑡
= σ𝑛=1

𝑁 𝐷𝑛 1 − exp −𝜆𝑛𝜓
𝑡

𝑔0, 𝑔1, 𝑔2, 𝑎 - nonlinear parameters dependent on stress at current time t, 𝜎𝑡

𝐷0, 𝐷𝑛 , 𝜆𝑛 – parameters in Prony series, here this project has 7 branches in Prony (i.e. n=7)



Nonlinear Viscoplastic Model

VP- Perzyna Model

ሶ𝜀𝑣𝑝 = ሶ𝜆𝑚 = 𝜂 𝜙 𝑓
𝜕𝑔

𝜕𝜎𝑖𝑗
= 𝜂

𝑓

𝜎𝑦
0

𝑁
𝜕𝑔

𝜕𝜎𝑖𝑗

Where,

𝜂 – viscosity parameter

N - constant

• 𝒇 yield stress

Yield Surface Hardening Associated/Non Associated

Model 1 Drucker-Prager Nonlinear Isotropic Associated (f=g)

Model 2 Von Mises Nonlinear Kinematic Associated (f=g)

Model 2:

𝑓 = 𝜎𝑒 − 𝜎𝑦
0 =

3

2
𝑆𝑖𝑗 − 𝛼 𝑆𝑖𝑗 − 𝛼 − 𝜎𝑦

0

α =
𝑐

𝑘
1 − 𝑒−𝑘𝜀𝑒

𝑣𝑝

Model 1:

𝑓 = τ − α𝐼1 − 𝜅 𝜀𝑒
𝑣𝑝

=
3

2
𝑆𝑖𝑗𝑆𝑖𝑗 − 𝛼𝐼1 − 𝜅 𝜀𝑒

𝑣𝑝

𝜅 𝜀𝑒
𝑣𝑝

= 𝜅0 + 𝜅1 1 − 𝑒−𝑘𝜀𝑒
𝑣𝑝



Nonlinear Viscoelastic-Viscoplastic Model

• Flowchart • Parameters Calibration

Creep data without 
permanent strain

•Prony series

•VE nonlinear 
parameters

Uniaxial tension test

•Yield surface and 
hardening rule

Creep data

•VP parameters



Bulk Coupon EA9696
Creep
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Bulk Coupon EA9696
Ratcheting 

0.5Hz, R=0.1, 1K Cycles
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Bulk Coupon EA9696
Ratcheting 

0.5Hz, R=0.1, 10K Cycles
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Bulk Coupon FM300-2
Creep
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Bulk Coupon FM3000-2
Ratcheting 

0.5Hz, R=0.1, 1K Cycles
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Bulk Coupon FM300-2
Ratcheting 

0.5Hz, R=0.1, 10K Cycles
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Conclusion

• Strain gages work surprisingly well in measuring thin bond adhesive strain

• Some adhesives exhibit more cyclic plasticity in shear than normal stress

• Plastic strain can accumulate at low stress (20% UTS)

• Adhesives exhibit viscoelastic and viscoplastic response.

• Parameters calibrated from creep test can predict ratcheting response.

• Plastic rule is more important for multiaxial stress.



Looking Forward

• Benefit to Aviation
– Methodology to characterize adhesive plasticity

– Improved models of adhesive time and plastic response

– Adhesive ratcheting behavior

• Future needs
– Experiment

– Shear with compression, WALS

– Shear angle, softening, failure surface examination

– Simulation of bonded joints under shear

– Extend current model to 2D plane strain.

– Consider plastic flow rule as non-associated.

– Apply to scarf and WALS adhesive joints.


