Durability of Adhesive Joints -cyclic loading -viscoplasticity

2019 JAMS Annual Meeting

5/22/19

Principal Investigators & Researchers

- Lloyd Smith
- Yi Chen, Michael Krause
- FAA Technical Monitor
 - Ahmet Oztekin

Other FAA Personnel Involved

- Larry Ilcewicz
- Industry Participation
 - The Boeing Company: Will Grace, Kay Blohowiak, Ashley Tracey

Motivation and Key Issues

- Adhesive bonding is a key path towards reduced weight in aerospace structures.
- Certification requirements for bonded structures are not well defined.

Objective

- Explore cyclic response of adhesive joints.
- Develop predictive models describing adhesive time and plastic response.

Approach

- Experiments designed to clarify constitutive relations.
- Develop FEA Models of adhesive bonds.
- Compare models with experiments that are unlike constitutive tests.

Review: Bulk Coupon, EA9696

Ratcheting triangle wave

Viscoelastic Response in Shear

Why Scarf Joint?

FEA Results :

- Scarf has no load eccentricity
- Scarf has a uniform distribution of shear stress
- Scarf has minimal peel stress

Measuring Cyclic strain

- Thin bond prevents traditional direct methods
- Extensometer tends to drift with cyclic loading
- DIC is computationally expensive
- Shear modulus gage not available

- Considered a stacked rosette
 - Maximum strain not sensitive to gage orientation

Scarf Coupon EA9696

Strain Modifications

- Divided each strain by the percentage of the gage covering the adhesive
- Strain Gauge Area: 0.064in x 0.05in
- Adhesive Thickness: 0.008in

$$\begin{array}{c} & a \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & &$$

 $\varepsilon_1 = \varepsilon_1 a/t$ $\varepsilon_2 = \varepsilon_2 a \cos(45^\circ)/t$ $\varepsilon_3 = \varepsilon_3 b/t$

$$\gamma_{xy} = 2\varepsilon'_2 - \varepsilon'_1 - \varepsilon'_3$$

Monotonic Testing Results

- Ultimate Shear Strength (USS): 6 ksi
- Adhesive Shear Modulus: 88.5 ksi
 - Verified through digital imaging correlation

Elastic Region

Creep Testing

• 50% USS

Change in Frequency

- 20% USS Sine Wave
- 0.1 R

Ratcheting

Recovery

Change in Frequency

- 50% USS Sine Wave
- 0.1 R

-1 R

Ratcheting

Ratcheting and Recovery

Maximum Shear Angle

- 50% USS Sine Wave
- 3 Hz

50% USS -1 R

Questions

- ▶ 50% UTS, R=0.1 (compression)
 - Similar cyclic and permanent strain as in tension?
- Do WALS coupons have response similar to scarf joints?
 - They also have tension at free edges
- Is strain growth associated with material softening (i.e. damage)?
 - We can now measure modulus during a cyclic test
- Is the maximum shear angle a measure of damage?
 - We need more data
- What can the failure surface tell us?
 - Adhesive failure vs. primer failure

EA9696 0. <u>1 R 10,000 Cycles</u>				
			Frequency (Hz)	
		0.05	3.00	5.00
Stross	80%	0/3	0/3	0/3
(% Ultimate	50%	2/3	2/3	1/3
Shear Strength)	20%	1/3	2/3	

EA9696 3 Hz 10,000 Cycles					
			R ratio		
		-1.00	-0.50	0.10	0.90
Stress	50%	2/3	1/3	2/3	1/3
(% Ultimate Shear Strength)	20%	3/3		2/3	

FM300-2 0<u>.1 R 10,000 Cycles</u>

		Frequency (Hz)		
		0.05	3.00	5.00
Chrone	80%	0/3	0/3	0/3
Stress (% Ultimate	50%	0/3	0/3	0/3
Shear Strength)	20%	0/3	0/3	

FM300-2 3 Hz 10,000 Cycles

		R ratio				
		-1.00	-0.50	0.10	0.90	
Stress	50%	0/3	0/3	0/3	0/3	
(% Ultimate Shear Strength)	20%	0/3		0/3		

Finished In Progress Not Started

Nonlinear Viscoplastic Model

• History Models

Popular Nonlinear Viscoplastic Models

Viscoplastic Models Comparison

• Raghava Model

$$f = \frac{(\eta - 1)I_1 + \sqrt{(\eta - 1)^2 I_1^2 + 12\eta J_2}}{2\eta} - \sigma_t - R(k)$$

- η viscosity parameter σ_t yield stress in uniaxial tension R(k) hardening rule
- Zapas- Crissman Model

$$\varepsilon^{\nu p} = \left(C \int_0^t \sigma^N \, d\tau \right)^M$$

C, N, M - temperature dependent parameters

• Both models had limited ability to describe plasticity.

Nonlinear Viscoplastic Model

Total Strain:

$$\varepsilon = \varepsilon^{ve} + \varepsilon^{vp}$$

VE- Schapery Model

$$\varepsilon^{\nu e}(t) = g_0 D_0 \sigma^t + g_1 \int_0^t \Delta D^{(\psi^t - \psi^\tau)} \frac{d(g_2 \sigma^\tau)}{d\tau} d\tau$$

$$\psi^{t} = \frac{t}{a}$$
$$\Delta D^{\psi^{t}} = \sum_{n=1}^{N} D_{n} (1 - \exp(-\lambda_{n} \psi^{t}))$$

 g_0, g_1, g_2, a - nonlinear parameters dependent on stress at current time t, σ^t D_0, D_n, λ_n - parameters in Prony series, here this project has 7 branches in Prony (i.e. n=7)

Nonlinear Viscoplastic Model

VP- Perzyna Model

$$\dot{\varepsilon}^{\nu p} = \dot{\lambda}m = \eta \langle \phi(f) \rangle \frac{\partial g}{\partial \sigma_{ij}} = \eta \langle \left(\frac{f}{\sigma_y^0}\right)^N \rangle \frac{\partial g}{\partial \sigma_{ij}}$$

Where,

 η - viscosity parameter

N - constant

• f yield stress

Model 1:

$$f = \tau - \alpha I_1 - \kappa (\varepsilon_e^{vp}) = \sqrt{\frac{3}{2}} S_{ij} S_{ij} - \alpha I_1 - \kappa (\varepsilon_e^{vp})$$
$$\kappa (\varepsilon_e^{vp}) = \kappa_0 + \kappa_1 \left(1 - e^{-k\varepsilon_e^{vp}}\right)$$

$$f = \sigma_e - \sigma_y^0 = \sqrt{\frac{3}{2}(S_{ij} - \alpha)(S_{ij} - \alpha)} - \sigma_y^0$$
$$\alpha = \frac{c}{k} \left(1 - e^{-k\varepsilon_e^{vp}}\right)$$

	Yield Surface	Hardening	Associated/Non Associated
Model 1	Drucker-Prager	Nonlinear Isotropic	Associated (f=g)
Model 2	Von Mises	Nonlinear Kinematic	Associated (f=g)

Nonlinear Viscoelastic-Viscoplastic Model

• Parameters Calibration

Bulk Coupon EA9696 Creep

Bulk Coupon EA9696 Ratcheting 0.5Hz, R=0.1, 1K Cycles

Bulk Coupon EA9696 Ratcheting 0.5Hz, R=0.1, 10K Cycles

Bulk Coupon FM300-2 Creep

Bulk Coupon FM3000-2 Ratcheting 0.5Hz, R=0.1, 1K Cycles

Bulk Coupon FM300-2 Ratcheting 0.5Hz, R=0.1, 10K Cycles

Conclusion

- Strain gages work surprisingly well in measuring thin bond adhesive strain
- Some adhesives exhibit more cyclic plasticity in shear than normal stress
- Plastic strain can accumulate at low stress (20% UTS)
- Adhesives exhibit viscoelastic and viscoplastic response.
- Parameters calibrated from creep test can predict ratcheting response.
- Plastic rule is more important for multiaxial stress.

Looking Forward

- Benefit to Aviation
 - Methodology to characterize adhesive plasticity
 - Improved models of adhesive time and plastic response
 - Adhesive ratcheting behavior
- Future needs
 - Experiment
 - Shear with compression, WALS
 - Shear angle, softening, failure surface examination
 - Simulation of bonded joints under shear
 - Extend current model to 2D plane strain.
 - Consider plastic flow rule as non-associated.
 - Apply to scarf and WALS adhesive joints.