

"Delamination/Disbond Arrest Features in Aircraft Composite Structures"

JAMS Technical Review

Luke Richard and Kuen Y. Lin University of Washington March 21, 2017

Sponsored Project Information

- Principal Investigator:
 - Dr. Kuen Y. Lin, Aeronautics and Astronautics, UW
- **Research Assistant:** Luke Richard, UW (Irich1@uw.edu)
- FAA Technical Monitor: Lynn Pham
- Other FAA Personnel: Curtis Davies, Larry Ilcewicz
- Industry Participants:
 - Boeing: Eric Sager, Matthew Dilligan, Lyle Deobald, Gerald Mabson, Eric Cregger, Marc Piehl, Bill Avery
 - Toray: Kenichi Yoshioka, Dongyeon Lee, Masahiro Hashimoto, Felix Nguyen
- Industry Sponsors: Toray and Boeing

Crack Arrest Mechanism by Fastener

Research Objectives

- Accurately predict crack arrest capability for varying laminate and fastener configurations
 - Understand driving parameters of crack propagation and arrest by multiple fasteners under static and fatigue loading
 - Develop modeling techniques which can be employed for design, certification and optimization

Two Fastener Experimental Work

- T800S/3900-2B unidirectional pre-preg tape
- 0.25 inch fasteners (Titanium and Stainless)
- (0/45/90/-45)₃₈ and 50% 0
- Load rate 0.1 mm/min (Static)
- 10 Hz or less (Fatigue)
- Crack tip tracked visually

2-Plate Two-Fastener Finite Element Model

- Virtual Crack Closure Technique (VCCT) used for crack propagation
- Fracture parameters, G_{IC}=1.6 lb/in, Nominal G_{IIC}=G_{IIIC}=14 lb/in Measured G_{IIC}: 12 lb/in (BMS 8-276)
- Fixed boundary conditions, test figure not modeled
- Two Dimensional
 - Plane strain representing crack growth along centerline
 - Lamina properties utilized in the model
- One Dimensional
 - Plates represented as beam/bar segments
 - Laminate properties derived from CLT
- Fatigue
 - Paris law utilized for crack growth vs. number of cycles
 - Damage beyond delamination not considered

2-Plate Two-Fastener Finite Element Model

- Fastener flexibility (H. Huth, 1986) $C = \left(\frac{t_1 + t_2}{2d}\right)^a \frac{b}{n} \left(\frac{1}{t_1 E_1} + \frac{1}{n t_2 E_2} + \frac{1}{2t_1 E_2} + \frac{1}{2n t_2 E_2}\right)^{a}$
 - Thickness $t_1=t_2=0.18$ in., diameter d=0.25 in., $E_x=$ laminate stiffness
 - Single Lap, bolted graphite/epoxy joint, constants taken as; a=2/3, b=4.2, n=1
- Fastener joint stiffness $k_{slide} = \frac{1}{C}$, Fastener tensile stiffness $k_{clamp} = \frac{AE}{(t_1 + t_2)}$

$$\left(\frac{G_I}{G_{IC}}\right)^{\alpha} + \left(\frac{G_{II}}{G_{IIC}}\right)^{\beta} + \left(\frac{G_{III}}{G_{IIIC}}\right)^{\delta} \le 1$$

- Power Law fracture criterion
- Fixed boundary condition similar to test; grips not modeled
- Friction coefficient assumed to be fixed value or zero

Static Test Results

Mode I Suppression

- First fastener effectively suppresses Mode I
 - Mode I suppression regardless of clearance value
 - Propagation load increases as $G_{IIC} > G_{IC}$
 - Fastener size excessive for Mode I suppression
 - 6-32 fasteners (D=0.1380) found to suppress mode I

Friction and Crack Curvature

- 0/0 interface has minimum tested coefficient of static friction: 0.25
- Load transfer through friction is small compared to through fastener for static loading
 - 1000 lb preload results in 250 lb load transfer
 - Load transfer is non-negligible in fatigue loading
- Crack Curvature is extensive near fasteners but minimal outside the influenced zone

Friction and Crack Curvature

 Strip model assumption is valid based on comparison of double width specimen with single with test articles

Fatigue Modeling

- Identical two and one dimensional models
 - Constant and Variable amplitude loading simulated
 - Paris Law and Miner's rule assumed to apply
 - Zero and positive clearance simulated
- Dramatic fatigue life difference due to clearance
 - Even 0.001 inch clearance shows dramatic simulated fatigue life difference
 - Consistent result both in tension-tension and tensioncompression loading

Fatigue Testing

- Below fatigue threshold, fastener has no effect
- Crack arrest capability reduced by clearance
- R Ratio and compression Tested
 - Compression behaved in similar manner to tension
 - R=0.2, 0.33, 0.5 with load amplitude=4,000 lbs
- Hole damage may be a critical factor
 - Visible on samples where crack growth did not occur
 - Increasing clearance value improves agreement on certain tests

Fatigue Results (High Loading)

- Run-out (10⁷ cycles) did not occur
- Clearance drilled hole did not experience arrest, crack propagation is only slowed

Fatigue Results (High Loading)

Fatigue model and test results agree better when identical (quasi-isotropic) layup used for fatigue properties

Fatigue Results (High Loading)

- Hole damage apparent during testing
 - Including a hole decay in the model improved agreement
 - No current scientific basis for the model
- 1D modeling provided better agreement
 - Fastener modeling becomes increasingly important

Fatigue Results (R Ratio)

• Various R ratios tested with amplitude of 8,000 lbs

Fatigue Results (50% Zero)

50% Zero results showed lower relative capability in fatigue
Greater crack growth at lower percentage of failure load

Future Work

- Hole Damage Modeling
 - Including a model of increasing clearance/cycle improves agreement
 - Establish a model
- Variable Amplitude Testing
- Mode III
 - None of the testing considers mode III

Looking Forward

- Benefit to Aviation
 - Tackle a crucial weakness of laminate composite structures
 - Improve analysis to prevent changes in schedule/cost due to a re-design associated with the delamination/disbond mode of failure in large integrated structures
 - Enhance structural safety by building a methodology for designing fail-safe co-cured/bonded structures
- Future needs
 - Further fatigue testing to better establish parameters
 - Initiate investigation of crack propagation through fastener arrays
 - Industry/regulatory agency inputs related to the application, design, and certification of this type of crack arrest feature

Question and comments?

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE