

Failure of Notched Laminates Under Out-of-Plane Bending

Taylor Rawlings John Parmigiani

JAMS 2017 Technical Review March 21, 2017

Matrix Compression Damage Model

- Motivation and Key Issues
 - Need to better understand compressive damage mechanisms in carbon fiber matrices
- Objective
 - Create a model that can be used to predict the material response to damage
- Approach
 - Experimental tests to validate continuum damage mechanics model and classify damage behavior

Project Overview

- Damage propagation in composites is broken up into four modes: Fiber tension, fiber compression, matrix tension, matrix compression
- Extensive experimental studies have been done to directly classify the propagation behavior of the former three modes
- No experimental studies have focused purely on matrix compression propagation behavior
- Instead, simplifying assumptions based on initiation studies are applied to matrix compression propagation behavior
- The often complex behavior of composite materials makes direct experimental observation desirable
- Goal: Design and test specimens to determine the damaged material behavior due to matrix compression loading

Today's Topics

- Matrix Compression History
- Uniform Compression Specimens
 - Damage Mechanisms
 - Stress Displacement
- Compact Compression Specimens
 - Damage Mechanisms
 - Variable Notch Study

Today's Topics

- Matrix Compression History
- Uniform Compression Specimens
 - Damage Mechanisms
 - Stress Displacement
- Compact Compression Specimens
 - Damage Mechanisms
 - Variable Notch Study

Matrix Compression History

- ABAQUS uses continuum damage mechanics model
- Previously performed a literature review
 - Fracture mechanics methods used to model compression damage
 - Determined possible specimens to isolate compression damage
 - Center Notched Compression (CNC)
 - Compact Compression (CC)
 - 4-Point Bending (4PB)
- ABAQUS modeling to determine best damage isolation
- Preliminary tests to confirm CC selection

Compact Compression (CC)

Today's Topics

- Matrix Compression History
- Uniform Compression Specimens
 - Damage Mechanisms
 - Stress Displacement
- Compact Compression Specimens
 - Damage Mechanisms
 - Variable Notch Study

Uniform Compression Specimens

- Measure the matrix compression stress-displacement behavior directly
- Range of dimensions used
 - Average dimensions shown in mm for general scale
- Dimensions selected to create matrix compression damage before buckling
- Monotonic and unloading tests to classify range of behavior
- Two different materials tested
 - Mitsubishi Rayon TR50S/NB301
 - Boeing provided material

Uniform Compression: Damage Mechanisms

Commercial Material

- Shear cracks through the thickness
- Angles between 52° to 73°
- Trapped material in crack wake
- Fiber Bridging

Sponsor Material

- Sudden specimen failure
- Multiple cracks

Uniform Compression: Stress Displacement

Commercial

- Three behavior zones
- Variable propagation speed
- Typically retains some stress

Sponsor

- One behavior zone
- Sudden specimen failure
- Little to no load carrying ability after fracture

Uniform Compression: Behavior Zones (Commercial)

- Zone 1 Elastic:
 - Unloading traces back over loading curve
- Zone 2 Non-Visible Damage:
 - Nonlinearity caused by plasticity and possibly micro cracking
- Zone 3 Visible Damage Progression:
 - Stiffness significantly degrades

population failure.

Uniform Compression: Commercial Nonvisible Damage

- Unloading tests used to determine behavior
- Hysteresis in unloading was observed
- Offset in displacement suggests plasticity
- Nonlinearity generally observed around a strain of 0.0125

Today's Topics

- Matrix Compression History
- Uniform Compression Specimens
 - Damage Mechanisms
 - Stress Displacement
- Compact Compression Specimens
 - Damage Mechanisms
 - Variable Notch Study

Compact Compression Specimens

- Compact compression (CC) specimens to propagate compression damage in a controlled way
 - Crack propagates further than UC
- Presents a more complex case for comparison of models
- J-Integral can be used to calculate strain energy release rate
- Notch length can be changed to vary crack length

Compression Specimens: Damage Mechanisms

Commercial

- Damage mechanisms primarily shear cracks through the thickness
 - Same as UC Specimens
- Shear cracks propagate parallel to the notch
- Shear cracks measured between 47° and 54°
 - UC showed 52° to 73°
- Propagation limited by tensile failure of the opposite end

Sponsor

- Unable to produce compressive damage before tensile splitting
- Maximum failure ratio $\frac{\sigma_{Compression}}{\sigma_{Tension}} = 2$
- Sponsor failure ratio $\frac{\sigma_{Compression}}{\sigma_{Tension}} > 2$

Commercial Compact Compression Specimen

Sponsor Specimen Splitting Fixtures

- Various fixtures tested to delay tensile failure in sponsor material
 - None delayed tensile failure long enough
- New specimen needed that can handle failure ratios above two

 $\frac{\sigma_{Compression}}{\sigma_{Tension}} > 2$

Compact Specimen: Variable Notch Study

- Compact Compression specimens with varying notch lengths
 - Used to determine the stress intensity factor
 - Used to determine if LEFM relationship exists at initiation
- Stress at crack imitation used for stress intensity factor calculation
- If LEFM relationship shown – Damage propagation studies $k_I = \sigma Y \sqrt{\pi a}$

Compact Specimens: Variable Notch Length (Tension)

- Tension study performed on sponsor material to evaluate testing method
- Linear relationship between crack length and stress intensity factor is expected
 - Linear relationship is observed

Compact Specimens: Variable Notch Length (Compression)

- Conducted to determine if LEFM is appropriate model for compressive crack initiation
- Notch length range: 19-63.5 mm
- Large notches fail in tension before compressive damage

Conclusions

- Significant difference is material properties and behaviors observed between commercial material and sponsor material
- Compact compression specimens isolate compressive damage when the failure ratio is less than two
- New specimen is needed for failure ratios greater than two
- Sponsor material shows a linear relationship between stress intensity factor and crack length when loaded in tension
- Commercial material shows a linear relationship between stress intensity factor and crack length when loaded in tension when compressive damage occurs prior to tensile failure

Looking forward

- Benefit to Aviation
 - Better understanding of damage mechanisms to refine models to increase accuracy
- Future Work
 - Further testing to classify range of damage behavior
 - Further testing with notches smaller than 19 mm
 - Mixed mode damage testing
 - Refine material model as needed

JOINT ADVANCED MATERIALS & STRUCTURES CENTER OF EXCELLENCE