

< L . N

οī (=%

ON gE

/ | ~ X I

R:g D

dvs ny

Denial of Service Attack Detection via Differential Analysis of Generalized Entropy Progressions

May 21, 2024

Omer Subasi, Joseph Manzano, Kevin Barker

Pacific Northwest National Laboratory (PNNL)

Richland, WA, USA

PNNL is operated by Battelle for the U.S. Department of Energy

ft_}.0
FadEZd

A5v %z

dvs ny

οī (=%^R

f c[iK l

P €NgE w

R:g D

/ | ~ X I

Introduction and Motivation

- Denial-of-Service (DoS) attacks are one of the most common and consequential cyber attacks in computer networks.
- A plethora of detection methods, yet the problem of **detecting DoS attacks** remains an open problem:
 - Detection approaches based on hyperparameters, such as thresholds, typically perform poorly.
 - Low scalability and low cost.
 - ✓ We treat **low cost** as having computational or memory complexity that is **lower than quadratic**, i.e., less than $O(N^2)$, and no requirement of large amount of training data.
 - High false positives and/or false negatives.
 - Differentiation between flash events and actual DoS attacks is non-trivial.
 - Misleading performance metrics: Standard metrics such as accuracy may be misleading.

t_}.0 FadEZ

dvs ny

οī (=%^₽

f c[iK l

°p; ſ≧NgE_w

R:g D

/ | ~ X I

Our Proposal: DoDGE

DoDGE:

- A more general entropy formulation (Tsallis) than Shannon entropy. ✓ Improves detection accuracy
- Removes thresholds:
 - \checkmark Instead, uses standard deviation of entropy progression derivatives ✓ Improves detection accuracy
- Leverages the asymmetric entropy behavior at target and source addresses to distinguish flash events and DoS attacks.
- Computations on local data (or nearby locations). ✓Low-cost
- Deployed on 5G edge nodes or Internet routers Making DoDGE embarrassingly parallel and scalable

dvs ny

οī (=«^

f c[iK l

°p; ØNgEw

R:g D

/ | ~ X I

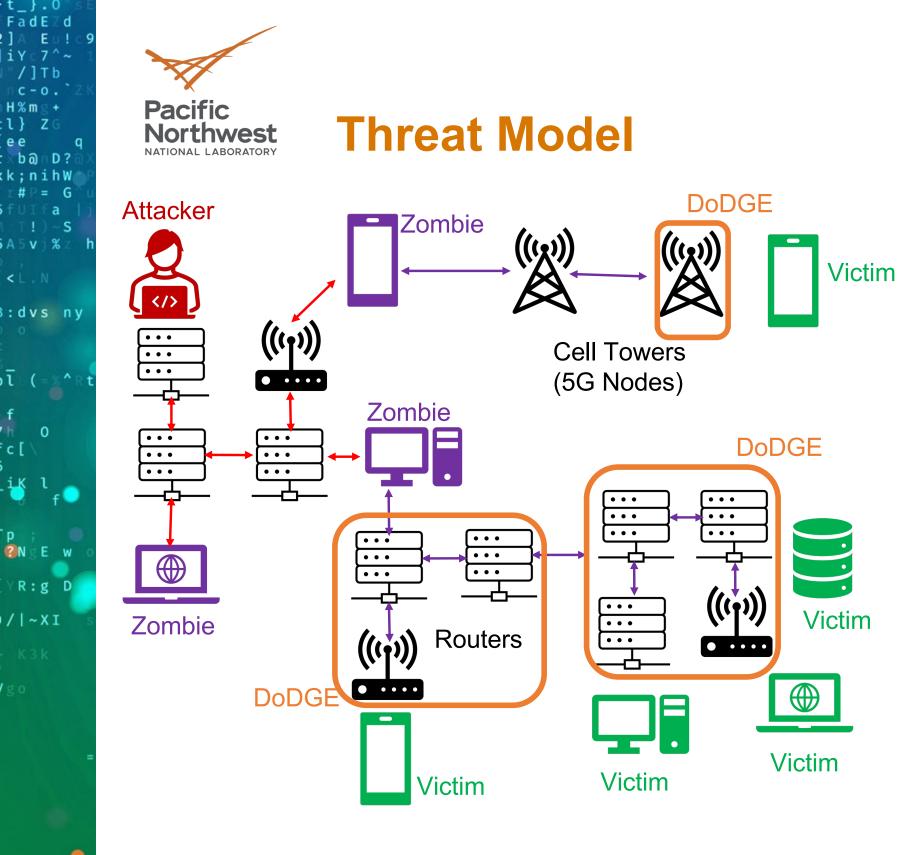
Background: Entropy

- Entropy appears in many areas such as thermodynamics, information theory and statistical mechanics.
- It generally refers to a measure of disorder, randomness, and uncertainty.
- In information theory, the most well-known entropy is **Shannon entropy**:
 - $H(X) = \sum_{i}^{N} p_i \log(p_i)$ where X is a discrete random variable which has possible outcomes x_i with probability p_i .
- More general formulations exist such as:

• **Renyi**:
$$R_{\alpha}(X) = \frac{1}{1-\alpha} \log(\sum_{i}^{N} p_{i}^{\alpha})$$

• **Tsallis**: $S_{q}(X) = \frac{1-\sum_{i}^{N} p_{i}^{q}}{q-1}$.

- Used in complex dynamical systems having multifractality, systems with long range forces, and entanglement in quantum systems.
- Such system require generalized entropy measures with weaker assumptions than Shannon's entropy such as non-additivity.



- An attacker exploits Internet and launches a DoS attack.
- - completely local (noncommunicating)
 - among a small group of neighbors (3-4).
- Majority vote.

DoDGE is placed at 5G nodes or cell towers and Internet routers. At 5G nodes, DoDGE operates At routers, DoDGE messages

f_}.0
FadEZ

3:dvs ny

τ (=%^)

f c[iK l

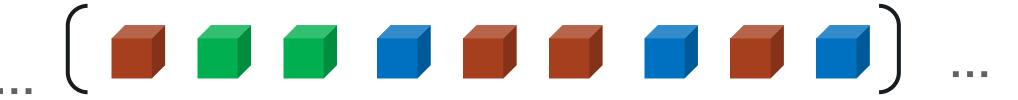
°p; r∎NgEw

R:g D

/ | ~ X I

Entropy Calculation

Let a window be 9 packets.



1. Compute the frequencies of the packets having the same color:

The frequency of the brown address is $\frac{4}{9}$.

The frequency of the green address is $\frac{2}{9}$.

Same color = Same address

The frequency of the blue address is $\frac{3}{9}$.

2. Take the frequencies as the probabilities of the addresses and compute the entropy for this window:

$$S_{q=8} = \frac{1 - \sum_{i}^{N} p_{i}^{q}}{q - 1} = \frac{1 - \sum_{i}^{N} p_{i}^{8}}{8 - 1} = \frac{1 - \left(\frac{4}{9}\right)^{8} - \left(\frac{2}{9}\right)^{8} - \left(\frac{3}{9}\right)^{8}}{7} = 0.1426$$

Differential Analysis of Generalized Entropy Progressions: Key Ideas I

Key Ideas I:

dvs ny

οī (=≚^

′h 0 ⁵c[∖

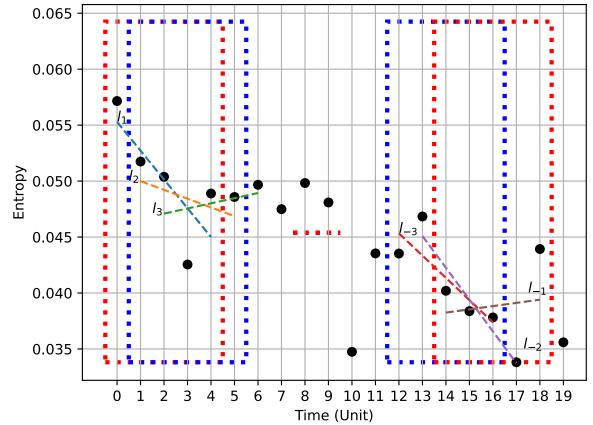
iK l

P; CNgEw

R:g D

/ | ~ X I

- We keep track of the entropy progression which is the time series of the entropies computed based on source or destination addresses.
- To detect a decrease in entropy, we check if the **derivative** of the entropy progression is negative.
- To calculate the derivative, we use the simplest model: line of best fit. The slope of this line is the derivative of the progression. If the derivative is negative, then the entropy is decreasing.



t_}.0 FadEZ

ASV %

dvs ny

οī (=</

h 0 €c[∖

iK l

°p; ØNgEw

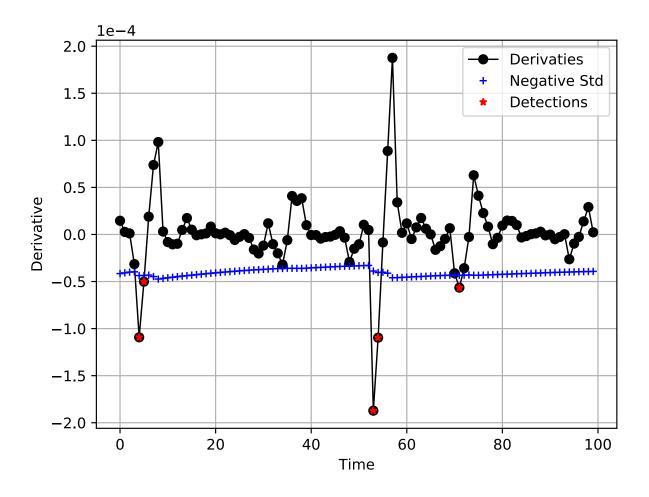
R:g D

/ | ~ X I

Differential Analysis of Generalized Entropy Progressions: Key Ideas II

Key Ideas II:

- We also compute dynamically the standard deviation of the entropy progression to increase the precision of attack detection.
- We avoid using thresholds.
- An attack is signaled when the derivative of the progression is less than the negative of the standard deviation.



8

t_}.0 FadEZd

band?

dvs ny

τ. (= %^F

f h o c[\

; -i∦ ≀ f●

P; 2NgEw

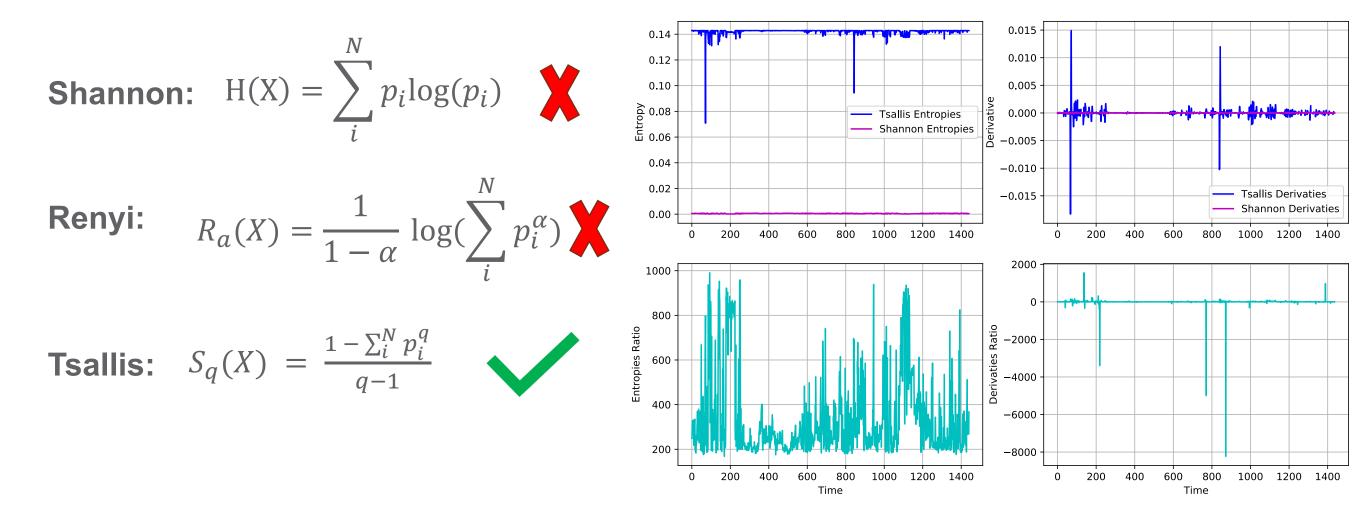
R:g D

/ | ~ X I

Differential Analysis of Generalized Entropy Progressions: Key Ideas III

• Key Ideas III:

We use generalized entropies to amplify the magnitude of the computed entropy. This improves the precision and accuracy of attack detection.



Pacific Northwest

t_}.0

dvs ny

οī (=≊^

iK l

P; CNEW

R:g D

/ | ~ X I

c [

Differential Analysis of Generalized Entropy Progressions: Key Ideas IV

• Key Ideas IV:

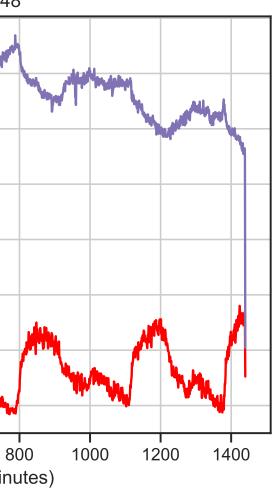
Leveraging the asymmetric entropy behavior in flash events.

Mixed Dataset 1e-3 destination 1.2 source 1.0 0.8 Entropy 0.6 0.4 0.2 -0.0 -50 200 100 150 250 Time (minutes)

Day 48 1e-4 2.3 destination source 2.2 2.1 2.0 Entropy 1.5 1.8 -1.7 · 1.6 200 400 600 Time (minutes)

No Flash Events

Flash Events



3:dvs ny

υīι(=%^π

; -₩ ι_fο

P; ØNgEw

R:g D

/ | ~ X I

f h o c[∖

DoDGE Algorithm (Simplified)

Inputs: The Destination Progression $\{EP_{D_i}\}$, the Source Progression $\{EP_{S_i}\}$

while (True)

. . .

destination_slope = line_of_best_fit($\{EP_{D_i}\}$) //slope for destination entropies source_ slope = line_of_best_fit({ EP_{S_i} }) //slope for source entropies // dynamically compute standard deviation for destination derivatives σ = ... if (destination slope $< -\sigma$) if (source slope > 0) Flash Event else DoS Attack, Launch Mitigation else Normal Traffic

ASV %z

3:dvs ny

οī (=%**^**Ι

f c[iK l

°p; ®NgE w

R:g D

/ | ~ X I

DoDGE Complexity Analysis

- Computational complexity: For N number of network packets in a single window:
 - Entropy computation is O(N).
 - Fitting the line of best fit to the entropy progression which has a fixed small number of entropies is **O(1)**.
 - Computing the standard deviation of the derivatives on-the-fly is O(1).
 - Checking the detection condition is O(1).
 - Therefore, the total computational complexity is O(N).
- Memory complexity: For N number of network packets in the unit-time window:
 - The memory for the window is O(N).
 - The memory for the temporary variables needed for the method is O(1).
 - Therefore, the total memory complexity is O(N).

fadEZ

dvs ny

οī (=</

; -₩ l

°p; r∎NgEw

R:g D

/ | ~ X I

f h 0 c[∖

Threshold- and Entropy-based DoS Attack Detection

- Thresholds can be static or dynamic.
- A static threshold would be to compute the average entropy for benign traffic offline and use it as a reference.
 - When a detection method is in use, it signals an attack if the current entropy is bigger than this reference value.
- Dynamic thresholds is computed when the detection method is running.
- Dynamic thresholds are average values over longer periods of time not computed for each time window.

3:dvs ny

οι (= %^R

f c[ik l

P PNSE w

R:g D

/ | ~ X I

Threshold-based and Entropy-based DoS Attack Detection Continued

Bidirectional entropy

- Incorporates both source and destination traffic flows.
- Short- and long-term entropies
- Thresholds:
 - Can be static or dynamic.
 - Many possibilities for dynamically computed thresholds:

 \checkmark Threhold_t = $\frac{1}{k} \sum_{j=t-k}^{t-1} threshold_j$ for some k.

- A decision strategy is Boolean-valued function whose input is entropies and thresholds.
 - It is used to decide if there is an attack or not.
 - Example:

 $\Psi(dst_{ste}, dst_{lte}, dst_{thr}, ...) = dst_{ste} < dst_{thr} \& dst_{lte} < dst_{thr}$

t_}.0 FadEZd

/]Tb c - o . H%mg+

A5v %z

s:dvs ny

οī (=%^Γ

f c[iK l

P; CNEW

R:g D

/ | ~ X I

Evaluation Datasets

- "Application" Dataset: Hossein Hadian Jazi, Hugo Gonzalez, Natalia Stakhanova, and Ali A. Ghorbani. "Detecting HTTP-based Application Layer DoS attacks on Web Servers in the presence of sampling." Computer Networks, 2017.
- "Benign" and "Mixed" Datasets: Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization", 4th International Conference on Information Systems Security and Privacy (ICISSP), January 2018.
- "UDP" and "TCP" Datasets: Derya Erhan, October 9, 2019, "Boğaziçi University DDoS Dataset", IEEE Dataport.
- A Labelled Dataset for ML Comparison: I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, "Developing realistic distributed denial of service (ddos) attack dataset and taxonomy," in International Carnahan Conference on Security Technology, 2019, pp. 1–8.
- France World Cup 98 Dataset: Internet traffic to www.france98.com during 1998 World Cup in France. It includes benign traffic with flash events occurring during match times. Randomly chosen Days 48, 63, 66, 69, and 78.

3:dvs ny

τ (= *

f c[iK l

°p; ØNgEw

R:g D

/ | ~ X I

Performance Metrics: Standard Metrics

- TP = true positive
- FP = false positive
- TN = true negative
- FN = false negative

Standard metrics are suitable for balanced data.

In balanced data, different classes have similar number of instances.

- Standard metrics:
 - TP+TNAccuracy = TP + FP + TN + FNPrecision = TP + FP

• **Recall** =
$$\frac{TP}{TP+FN}$$

Performance Metrics: Balanced Accuracy

- TP = true positive.
- FP = false positive.
- TN = true negative.
- FN = false negative.
- TPR = true positive rate.
- TNR = true negative rate

• **TPR**=
$$\frac{TP}{TP+FN}$$

• **FPR**= $\frac{TN}{TN+FP}$

When data is highly unbalanced, standard metrics are not suitable and can be misleading.

In unbalanced data, different classes have very different number of instances.

Metrics, such as **balanced accuracy**, that take account the imbalance are needed to be used.

• Balance Accuracy = $\frac{1}{2}(TPR + TNR) = \frac{1}{2}(\frac{TP}{TP + FN} + \frac{TN}{TN + FP})$

dvs ny

οī (=%^)

f c[\ iK l

R:g D

/ | ~ X I

A5v %z

3:dvs ny

οī (=%^R

f c[ik l

°p; 12NgEw

R:g D

/ | ~ X I

Performance Metrics: Balanced Accuracy Cont.

- In the test dataset we used, among 4.3 million instances only 35772 instances are **benign**. That is, **only 0.8% are benign**.
- Considering **ML models**, they tend to be **biased** toward the class(es) that have a high number of instances.
- Regardless of their performance for the classes with few instances, ML models' performance in terms of standard metrics will be close to 100%, especially if the imbalance is very high.
- This shows that the percentages with respect to standard metrics can be misleading.
- We see this in our evaluation.

fadEZd

iYc7^ /]Tb c - 0 .

H%mg+

ba D?

k;nihW

ASV %Z

dvs ny

οī (=<u>*</u>^

f c[iK l

P; Ngew

R:g D

/ | ~ X I

Comparison to ML

Algorithm	Accuracy	Precision	Recall	Balanced
SVC	99.20%	99.20%	99.90%	50.20%
DT	99.20%	99.40%	99.90%	61.60%
RF	99.30%	99.30%	99.90%	59.10%
KN	12.10%	97.40%	11.80%	37.10%
GB	99.20%	99.40%	99.80%	61.20%
LR	99.20%	99.20%	100%	50.10%
CONV	99.20%	99.20%	100%	50.00%
LSTM	99.20%	99.20%	100%	50.00%
GRU	99.20%	99.20%	100%	50.00%
ED	99.20%	99.20%	99.90%	49.90%
DoDGE	75.70%	100%	75.50%	99.30%

- DoDGE has balanced accuracy of 99%.
- Average ML balanced accuracy is 52%.

Support vector machines (SVC) Decision Trees (DT) Random Forest (RF) K-Neighbors (KN), Gradient Boosting (GB) Logistic Regression (LR) Convolutional Network (CONV), Long Short-Term Memory (LSTM) Gated Recurrent Unit (GRU) Encoder-Decoder (ED)

All 10 ML models have balanced accuracy < 62%.

t_}.0 FadEZd

D?

B:dvs ny

ī (=<u>*</u>

f h 0 c[∖

iK ۱ f

P; 2NgEw

R:g D

/ | ~ X I

False Positive Rates for All Methods

False Positive Rate 0.4 0.3 **DoDGE** outperforms 0.2 0.1 0.0 \$5 \$5 \$5 \$5 \$2 \$1 Shannon Shannon Renyi Tsallis

Application

Benign Mixed False Positive Rate Positive Rate 0.5 0.4 0.3 0.2 False I 0.1 0.0 S³ S² S¹ S² S² s³ s³ s² s² s⁴ Shannon Shannon Shannon Renyi Renyi Tsallis Tsallis

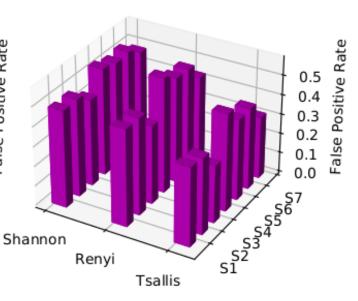
Renyi

UDP

Tsallis

threshold-based methods by two orders of magnitude for false positives on average.

Purple: Thresholds Green: DoDGE



TCP

False Positive Rat

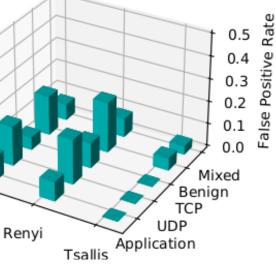
0.6

0.4

0.2

0.0

Our Algorithm with Tsallis (0.00, 0.00, 0.00, 0.05, 0.04)



Flash Events: Entropy at Source and Destination Addresses

Northwest

Pacific

t_}.0 FadEZd

Y = 7'

H%m ፸ ◀

/]Tb c-o.

Z

b∂ D? k;nihW

A5v %2

dvs ny

οι (==^

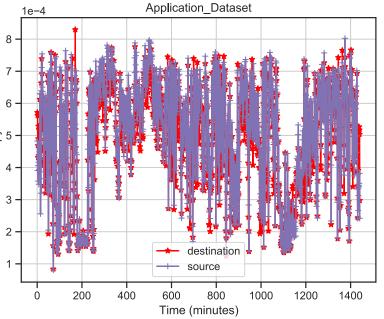
c [

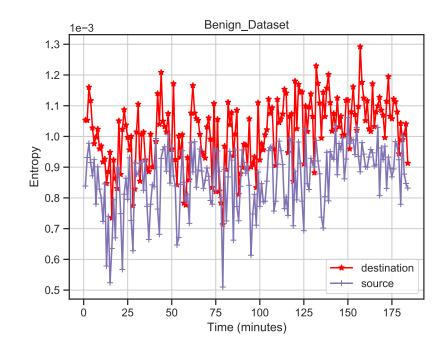
iK l

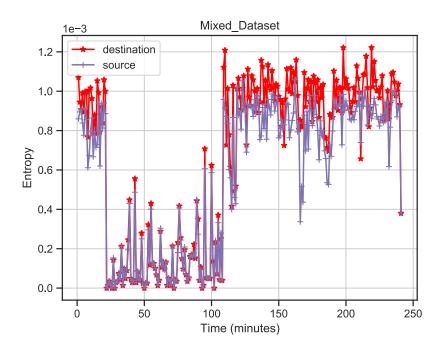
S

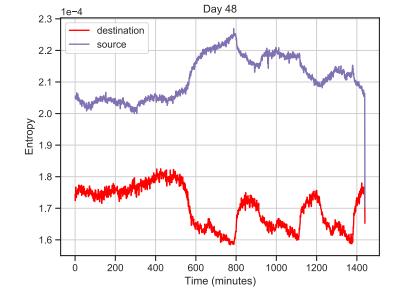
NO Flash Events

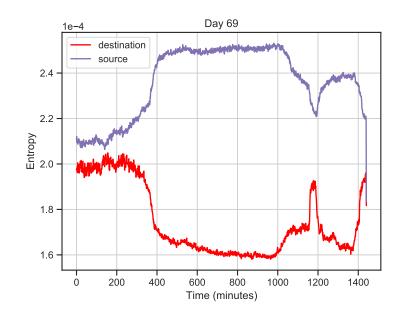
R:g D Flash Events

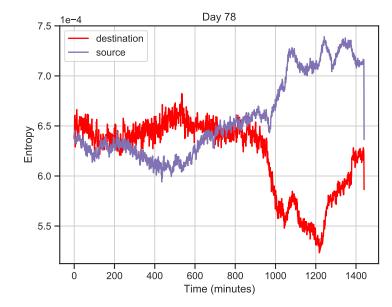


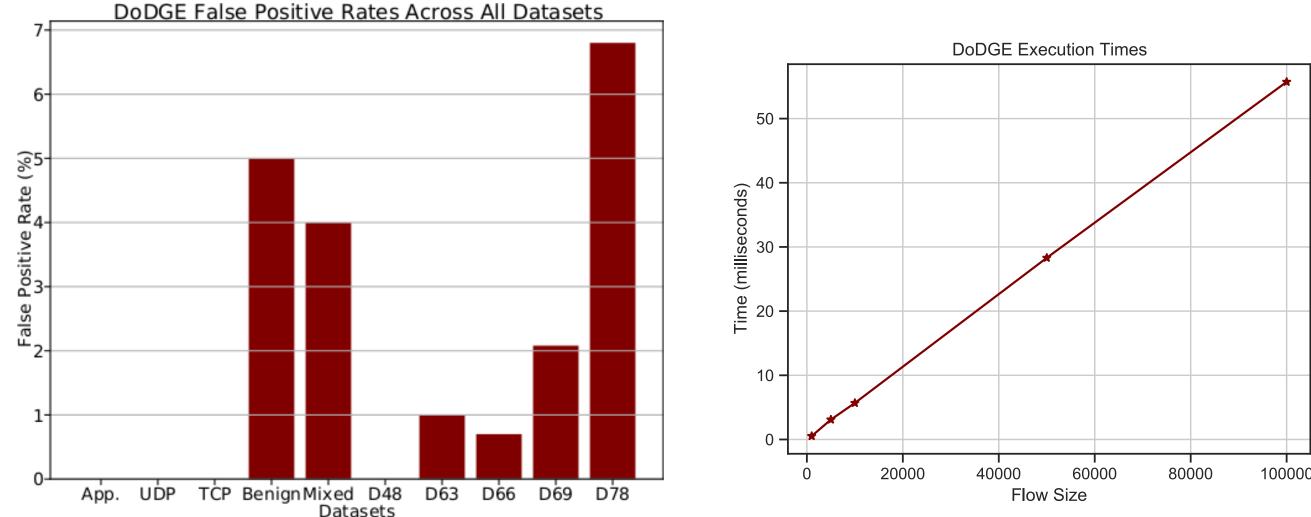












DoDGE achieves low false positive rates.

fluctrian f

iYc7^ /]Tb c - 0 .

H% m 👳 🕇

banD? k;nihW

A5v %z

3:dvs ny

οī (=≊^

iK ۱ 💧

NgE w

/ | ~ X I

R:g D

h 0 ℃[\

р

1} Z

e e

Pacific

Northwest

100000

DoDGE is lightweight and scalable.

A5v %z

3:dvs ny

υīι(=%^R

f c[iK l

P PNSE w

R:g D

/ | ~ X I

Conclusions

- A DoS attack detection method using Differential analysis of Generalized Entropy progressions - DoDGE.
- DoDGE outperforms threshold-based methods by two orders of magnitude in terms of false positives on average.
- DoDGE's balanced accuracy of 99% vs all 10 ML/DL models' balanced accuracy < 62%.
 - The average balanced accuracy is 52% for ML/DL.
- DoDGE successfully differentiates flash events and DoS attacks.
- DoDGE is
 - lightweight linear time and memory complexity -,
 - scalable,
 - embarrassingly parallel.

t_}.0 FadEZ

dvs ny

τ (= * ^

f c[iK l

R:g D

/ | ~ X I

Acknowledgement

• This work was supported by the U.S. DOE Office of Science, Office of Advanced Scientific Computing Research, under award 66150: "CENATE -Center for Advanced Architecture Evaluation" project. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830.

Link to our paper: https://ieeexplore.ieee.org/document/10224957

t_}.0 FadEZd

iYc7^~ /]Tb nc-o.` H%mg+

:l} Z

b@ D? k;nihW # = G

A5v1%z

dvs ny

τ. (= %^F

f o c[∖ iK l f o

P; 2NgEw

R:g D

/ | ~ X I

e e

Thank you

ufl . \$ Id wX P! . -04* 1 6|f 1 U~ZIniBD K P s \ f \ (D 2 d - { . n ; r P h m | Mnpu3Ng;, "80SDT8Q) 0].?b b]?. - / m A ; $R \setminus 1 > a o / % l M G S B C * N$ 9 Fg I, Mr 0 @ " {+KELP7abx.H^ .c:0>1_A:WDhXq5~g! <CGI DVfm#76vCv>uu4?C1:M:T6ifl iV:mwG&l'\VG6

