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Introduction and Motivation

• Denial-of-Service (DoS) attacks are one of the most common and 
consequential cyber attacks in computer networks. 

• A plethora of detection methods, yet the problem of detecting DoS attacks 
remains an open problem:
§ Detection approaches based on hyperparameters, such as thresholds, typically 

perform poorly. 
§ Low scalability and low cost. 

ü We treat low cost as having computational or memory complexity that is lower than quadratic, i.e., 
less than O(N2), and no requirement of large amount of training data.

§ High false positives and/or false negatives.
§ Differentiation between flash events and actual DoS attacks is non-trivial.
§ Misleading performance metrics: Standard metrics such as accuracy may be 

misleading.
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Our Proposal: DoDGE

• DoDGE:
§ A more general entropy formulation (Tsallis) than Shannon entropy.

üImproves detection accuracy 
§ Removes thresholds: 

üInstead, uses standard deviation of entropy progression derivatives
üImproves detection accuracy 

§ Leverages the asymmetric entropy behavior at target and source 
addresses to distinguish flash events and DoS attacks.

§ Computations on local data (or nearby locations).
üLow-cost

§ Deployed on 5G edge nodes or Internet routers
üMaking DoDGE embarrassingly parallel and scalable
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Background: Entropy

• Entropy appears in many areas such as thermodynamics, information theory 
and statistical mechanics. 

• It generally refers to a measure of disorder, randomness, and uncertainty. 
• In information theory, the most well-known entropy is Shannon entropy:

§ H X = ∑!" 𝑝!log(𝑝!) where X is a discrete random variable which has possible 
outcomes 𝑥!	with probability 𝑝!.

• More general formulations exist such as:
§ Renyi:	 𝑅# 𝑋 = $

$%&
log ∑!" 𝑝!&

§ Tsallis:           𝑆'(𝑋) 	=
$	%	∑!

" *!
#

'%$ .  
§ Used in complex dynamical systems having multifractality, systems with long range 

forces, and entanglement in quantum systems. 
§ Such system require generalized entropy measures with weaker assumptions than 

Shannon’s entropy such as non-additivity. 
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Threat Model
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DoDGE
• An attacker exploits Internet and 

launches a DoS attack. 

• DoDGE is placed at 5G nodes or 
cell towers and Internet routers. 

• At 5G nodes, DoDGE operates 
completely local (non-
communicating) 

• At routers, DoDGE messages 
among a small group of 
neighbors (3-4). 

• Majority vote. 
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Entropy Calculation

… …

Let a window be 9 packets.

1. Compute the frequencies of the packets having the same color: 

The frequency of the brown address is !
"
 .

The frequency of the green address is #
"
. 

The frequency of the blue address is $
"
.

2. Take the frequencies as the probabilities of the addresses and compute the entropy for this window: 

Same color = Same address

𝑆%&' =
1 −	∑() 𝑝(

%

𝑞 − 1 =
1 −	∑() 𝑝('

8 − 1 =
1 − 4

9
'
− 2

9
'
− 3

9
'

7 = 0.1426
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Differential Analysis of Generalized Entropy 
Progressions: Key Ideas I

• Key Ideas I:
§ We keep track of the entropy progression which 

is the time series of the entropies computed based 
on source or destination addresses.

§ To detect a decrease in entropy, we check if the 
derivative of the entropy progression is negative.

§ To calculate the derivative, we use the simplest 
model: line of best fit. The slope of this line is the 
derivative of the progression. If the derivative is 
negative, then the entropy is decreasing.
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Differential Analysis of Generalized Entropy 
Progressions: Key Ideas II

• Key Ideas II:
§ We also compute dynamically the standard 

deviation of the entropy progression to 
increase the precision of attack detection.

§ We avoid using thresholds.

§ An attack is signaled when the derivative of 
the progression is less than the negative of 
the standard deviation.
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Differential Analysis of Generalized Entropy 
Progressions: Key Ideas III

• Key Ideas III:
§ We use generalized entropies to amplify the magnitude of the computed entropy. 

This improves the precision and accuracy of attack detection.

	 H X =0
!

"

𝑝!log(𝑝!)

	 𝑅#(𝑋) =
1

1 − 𝛼
	log(0

!

"

𝑝!&)

           𝑆'(𝑋) 	=
$	%	∑!

" *!
#

'%$

Shannon: 

Renyi: 

Tsallis: 
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Differential Analysis of Generalized Entropy 
Progressions: Key Ideas IV

• Key Ideas IV:
§ Leveraging the asymmetric entropy behavior in flash events.

Flash EventsNo Flash Events
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DoDGE Algorithm (Simplified)
Inputs: The Destination Progression {𝐸𝑃!*}, the Source Progression {𝐸𝑃"*}

...
while (True)
       …

destination_slope = line_of_best_fit({𝐸𝑃!*}) //slope for destination entropies
source_ slope = line_of_best_fit({𝐸𝑃"*})  //slope for source entropies
σ = … // dynamically compute standard deviation for destination derivatives 
if (destination_slope < −σ)

if (source_slope > 0)
 Flash Event
else DoS Attack, Launch Mitigation

else Normal Traffic 
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DoDGE Complexity Analysis

• Computational complexity: For N number of network packets in a single 
window:
§ Entropy computation is O(N).
§ Fitting the line of best fit to the entropy progression which has a fixed small number of 

entropies is O(1).
§ Computing the standard deviation of the derivatives on-the-fly is O(1).
§ Checking the detection condition is O(1).
§ Therefore, the total computational complexity is O(N).

• Memory complexity: For N number of network packets in the unit-time 
window: 
§ The memory for the window is O(N).
§ The memory for the temporary variables needed for the method is O(1).
§ Therefore, the total memory complexity is O(N).
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Threshold- and Entropy-based DoS Attack 
Detection

• Thresholds can be static or dynamic. 
• A static threshold would be to compute the average entropy for benign traffic 

offline and use it as a reference. 
§ When a detection method is in use, it signals an attack if the current entropy is bigger 

than this reference value.

• Dynamic thresholds is computed when the detection method is running.
• Dynamic thresholds are average values over longer periods of time - not 

computed for each time window.
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Threshold-based and Entropy-based DoS Attack 
Detection Continued

• Bidirectional entropy
§ Incorporates both source and destination traffic flows.

• Short- and long-term entropies
• Thresholds: 

§ Can be static or dynamic. 
§ Many possibilities for dynamically computed thresholds:

ü 𝑇ℎ𝑟𝑒ℎ𝑜𝑙𝑑+ = ,
-
∑.&+/-+/, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑. for some 𝑘.

• A decision strategy is Boolean-valued function whose input is entropies and 
thresholds. 
§ It is used to decide if there is an attack or not.
§ Example: 
 Ψ(𝑑𝑠𝑡#$%, 𝑑𝑠𝑡&$%, 𝑑𝑠𝑡$'( , …) = 𝑑𝑠𝑡#$% < 𝑑𝑠𝑡$'(	&	𝑑𝑠𝑡&$% < 𝑑𝑠𝑡$'(
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Evaluation Datasets

• “Application” Dataset: Hossein Hadian Jazi, Hugo Gonzalez, Natalia Stakhanova, and Ali 
A. Ghorbani.  "Detecting HTTP-based Application Layer DoS attacks on Web Servers in the 
presence of sampling." Computer Networks, 2017.

• “Benign” and “Mixed” Datasets: Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. 
Ghorbani, “Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic 
Characterization”, 4th International Conference on Information Systems Security and 
Privacy (ICISSP), January 2018.

• “UDP” and “TCP” Datasets: Derya Erhan, October 9, 2019, "Boğaziçi University DDoS 
Dataset", IEEE Dataport.

• A Labelled Dataset for ML Comparison: I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. 
A. Ghorbani, “Developing realistic distributed denial of service (ddos) attack dataset and 
taxonomy,” in International Carnahan Conference on Security Technology, 2019, pp. 1–8.

• France World Cup 98 Dataset: Internet traffic to www.france98.com during 1998 World 
Cup in France. It includes benign traffic with flash events occurring during match times. 
Randomly chosen Days 48, 63, 66, 69, and 78.

http://www.france98.com/
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Performance Metrics: Standard Metrics

• TP = true positive
• FP = false positive 
• TN = true negative
• FN = false negative

• Standard metrics:
§ 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 = !"#!$

!"#%"#!$#%$
  

§ 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 = !"
!"#%"

	

§ 𝐑𝐞𝐜𝐚𝐥𝐥 = !"
!"#%$

 

Standard metrics are suitable for balanced data.

In balanced data, different classes have 
similar number of instances.
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Performance Metrics: Balanced Accuracy

• TP = true positive. 
• FP = false positive. 
• TN = true negative. 
• FN = false negative. 
• TPR = true positive rate.
• TNR = true negative rate 

• TPR= !"
!"#%$

 

• FPR= !$
!$#%"

• 𝐁𝐚𝐥𝐚𝐧𝐜𝐞	𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 = &
'
𝑇𝑃𝑅 + 𝑇𝑁𝑅 = &

'
( !"
!"#%$

+ !$
!$#%"

)

When data is highly unbalanced, standard 
metrics are not suitable and can be misleading. 

In unbalanced data, different classes have 
very different number of instances.

Metrics, such as balanced accuracy, that take 
account the imbalance are needed to be used.
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Performance Metrics: Balanced Accuracy Cont.

• In the test dataset we used, among 4.3 million instances only 35772 
instances are benign. That is, only 0.8% are benign. 

• Considering ML models, they tend to be biased toward the class(es) that 
have a high number of instances.

• Regardless of their performance for the classes with few instances, ML 
models’ performance in terms of standard metrics will be close to 100%, 
especially if the imbalance is very high. 

• This shows that the percentages with respect to standard metrics can be 
misleading.

• We see this in our evaluation.
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Comparison to ML

Algorithm Accuracy Precision Recall Balanced

SVC 99.20% 99.20% 99.90% 50.20%

DT 99.20% 99.40% 99.90% 61.60%

RF 99.30% 99.30% 99.90% 59.10%

KN 12.10% 97.40% 11.80% 37.10%

GB 99.20% 99.40% 99.80% 61.20%

LR 99.20% 99.20% 100% 50.10%

CONV 99.20% 99.20% 100% 50.00%

LSTM 99.20% 99.20% 100% 50.00%

GRU 99.20% 99.20% 100% 50.00%

ED 99.20% 99.20% 99.90% 49.90%

DoDGE 75.70% 100% 75.50% 99.30%

Support vector machines (SVC) 
Decision Trees (DT)
Random Forest (RF) 
K-Neighbors (KN),
Gradient Boosting (GB)
Logistic Regression (LR)
Convolutional Network (CONV),
Long Short-Term Memory (LSTM) 
Gated Recurrent Unit (GRU)
Encoder- Decoder (ED)

• DoDGE has balanced 
accuracy of 99%. 

• All 10 ML models have 
balanced accuracy < 62%.

• Average ML balanced 
accuracy is 52%.
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False Positive Rates for All Methods 

DoDGE outperforms 
threshold-based 
methods by 
two orders of 
magnitude
for false positives 
on average.

Purple: Thresholds
Green: DoDGE
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Flash Events: Entropy at Source and Destination 
Addresses

No 
Flash
Events

Flash 
Events
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False Positive Rates and Scalability

DoDGE achieves low false positive rates. DoDGE is lightweight and scalable.
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Conclusions

• A DoS attack detection method using Differential analysis of Generalized 
Entropy progressions - DoDGE. 

• DoDGE outperforms threshold-based methods by two orders of magnitude in 
terms of false positives on average. 

• DoDGE’s balanced accuracy of 99% vs all 10 ML/DL models’ balanced 
accuracy < 62%. 
§ The average balanced accuracy is 52% for ML/DL.

• DoDGE successfully differentiates flash events and DoS attacks.
• DoDGE is

§ lightweight - linear time and memory complexity -,
§ scalable, 
§ embarrassingly parallel.
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