Impervious surfaces impede rainwater from infiltrating into the ground as it naturally
would. As the amount of Impervious surfaces increase, the amount of stormwater runoff
increases as well. This runoff flows to inlets and is collected in the storm sewer
system. Unlike water that goes down a sink or toilet, stormwater flows untreated from
the storm sewer to our streams and lakes. This becomes a problem because the runoff
picks up loads of pollutants on its way to the system. This stormwater pollution
can lead to major environmental issues, on its way to, and once it reaches its destination.
One way to mitigate this pollution is through the use of stormwater best management
practices (BMPs). An especially effective best management practice is the installation
of retention ponds. Retention ponds constructed on the west side of campus where BMPs
are scarce would provide an area for stormwater to be captured, treated, and slowly
released. Through this construction, Wichita State would be drastically decreasing
the impact that the campus is having on the environment
Planting Trees on Wichita State’s Campus to Help Offset Ecological Footprint
Guadalupe Gonzalez
It has long been known the rising carbon dioxide emissions have negatively been impacting
our Earth, yet we still are falling behind on reducing our greenhouse emissions. There
have been several proposed ideas that would help offset the increase in emissions,
but we still have a way to go to become carbon neutral. Though, what if one of answers
to our problem was as simple as planting more trees? According to the Department of
Agriculture and Arbor Day Foundation, a single mature tree will absorb 48 pounds of
carbon dioxide per year. Trees are also natural filters for the environment. Not only
do they sequester carbon dioxide and release vital oxygen for us, trees also can absorb
other pollutants, dust, reduce soil erosion, and provide habitats for species. I am
proposing Wichita State University continue and improve their efforts in tree planting
around campus, especially in areas where the soil had been removed and disturbed,
to help improve air quality and help offset the university’s ecological footprint.
A California university found that their small, 140-acre campus had a footprint of
over 5,700 acres. Planting trees alone is not going to fix climate change, but it
is a small and feasible step Wichita State can take.
Greening Campus Buildings- Addition of Water Bottle Refilling Stations
Meaghan Mizak
Every year, more than 8 million tons of plastic water bottles are added to the ocean.
In the U.S. alone, there are 13 single-use plastic water bottles used each month per
adult. Here at Wichita State University, there is an opportunity to cut back on the
usage of single-use plastic water bottles. By installing at least one water bottle
refilling station in every building on campus, we could decrease our personal addition
of plastic to the world’s seas. In the assessment of nine water bottle refilling stations
already located on campus, over 500,000 water bottles have been refilled. In this proposal of greening the campus, the goal is to have at least one water bottle
refilling station installed in every building on campus. Out of 11 campus buildings
evaluated for water bottle refilling stations, only four had at least one refilling
station. There are 32 buildings on campus that are available for the use of student
enrolled classes. Using other Universities as “role models” for refilling stations,
ideally, there should be around 25.5 refilling stations per every 10,000 students.
As of 2019, Wichita State University has a student population of 16,000 students,
this means there should be at least 40.8 water bottle refilling stations on campus. Water bottle refilling stations provide a place for students to support the sustainability
of the campus, aid in their own personal journey to creating a more environmentally
friendly life and allows for the student population and the University to decrease
their single-use plastic footprint. The world’s seas are at a crucial point where
they cannot tolerate the usage of single-use plastics any longer. Wichita State University
has the chance to make an impact in the single-use plastics put into the environment
by their own students.
The handling, processing, and recycling of e-waste is a global problem. Large amounts
of potentially valuable metals and other materials contained in cell phones, computers,
and other electronics are routinely lost through disposal in landfills or unethically
sent to third world communities where reprocessing and disassembly takes place under
unsafe or even hazardous conditions. For the general Wichita community, the process
for proper disposal of e-waste can be as easy as dropping it off at your local computer
or cell phone retailer, but many people do not know where to take old devices. Procedures
for discarding e-waste at WSU entails several stages and three different sectors of
the university for each item leaving a department. In the Geology Department, this
student discovered that two rooms were filled with discarded electronic devices. This
study examines current practices at WSU, including the waste stream for obsolete electronics
and makes recommendations for streamlining the process and encouraging best practices.
Recommendations are presented for distributing Information on proper recycling to
university departments, students, and the larger community. By holding e-waste collection
days and spreading awareness of options for recycling e-waste in safe and sustainable
ways we can help to alleviate the need for precious metal mining and toxic waste pollution
from unsustainable recycling and disposal practices.
Sustainability on college campuses and creating a greener campus is increasing in
popularity throughout the United States. Climate change impacts on our world are being
recognized now more than ever and universities are striving to do their part to reduce
their environmental footprint. This project aims to investigate rainwater harvesting
as a means of water conservation at Wichita State University. Global water stress
is anticipated to increase due to several environmental stressors and unsustainable
water usage, so conservation is essential. Rainwater harvesting is one way to reduce
water stress by decreasing the amount of water being taken from groundwater and surface
water sources. In this project, Wichita State University was found to be an ideal
place to implement a trial run for rainwater collection. Specifically for landscaping
because of the large amounts of annual water usage. Implementing this system on campus
has the potential to collect millions of gallons of water each year, thereby reducing
water bills by thousands of dollars. This investment would have a fast return time
and would significantly help conserve water.
Polymer Nano-Composite Materials Based on Hyperbranched Polymers in Petroleum Applications
Ammar Abdelgawad
The Petroleum sector is facing a wide variety of challenges in finding economically
and safe solutions for the corrosion problem, in which a tremendous amount of different
metals, especially carbon steel, are consumed as pipelines, tubing, pumps, valves
and tanks. Corrosion is a problem in three major sectors in the petroleum industry:
production, transportation, and storage and refinery operations. It is very important
to prevent the corrosion of the metals used in pipelines due to the resulting waste
of money and resources. Polymer nanocomposite materials based on hyperbranched polymers
are widely used now for pipeline coatings as anti-corrosive materials.
Polycondensation and the more advanced atom transfer radical polymerization (ATRP)
techniques would be used to synthesize ester-amide hyperbranched in addition to the
formulation with the graphene oxide to form the anti-corrosive nanocomposites which
is very challenging. My goal for this project is therefore to establish conditions
for consistent preparation of the ester-amide hyperbranched polymers and nanocomposites
based on graphene oxide materials with well-controlled molecular weights, and to fully
characterize these polymers as anti-corrosive coatings for steel pipeline.
Asset Management in Electric Power Systems: Bibliometric Analysis
Ashfaque A Mohib
Utility companies are forced into adopting strategies to satisfy customer demand and
reliability, maintain and grow asset infrastructures, increase return on investments
and improve operational efficiencies to compete in dynamic market for sustainability
and growth. The purpose of this paper is to provide an overview of asset management
in electric power systems and research gaps of interest by performing bibliometric
analysis. We perform a series of qualitative and quantitative analysis on secondary
data by conducting an iterative and multi-combination of keywords searches on Scopus
database to provide a comprehensive list of published work in this knowledge domain.
VOSviewer is utilized to generate visual maps, network diagrams and clusters, using
keyword co-occurrence, source citation, and bibliometric coupling techniques. Microsoft
Access is used for data set analysis, prior to an extensive literature review. We
identify four areas of research thrusts in asset management in electric power systems:
asset maintenance scheduling, asset preventive maintenance, asset failure analysis,
and asset life-cycle planning. Future researchers would benefit from the given iterative
and efficient research techniques to contribute further to the extend this knowledge
domain. Asset managers in utility companies would benefit from the extension of this
current research through the extant literature reviews, supplemented frameworks and
improved optimization models.
Bismuth Sulfide and Titanium Oxide as Photo-electron Materials for Dye Sensitized
Solar Cells
Saket Chand Mathur
Since energy production for day to day use is moving towards renewable energy sources
as these sources become more economically viable, while being less polluting to operate,
Solar energy has become one of the major sources of renewable energy. However, it
currently relies on ultra-pure silicon ingots to produce commercial silicon photovoltaics,
which prevents the cost of electricity being produced to compete with non-renewable
energy production. A viable low cost alternative for silicon based cells would be
Dye-Sensitized Solar Cells(DSSC), which are easier and cheaper to manufacture as they
do not require expensive and delicate raw materials to make, while they could be made
semi-flexible which allows for a greater variety of applications for these cells. A DSSC can be said to be made of three distinct parts, a photo-electrode, an electrolyte
in the middle and a counter-electrode. When exposed to incident light, the photoelectrode
which contains complex photosensitizers, which releases an electron which is transported
to the external load, leaving the photoelectrode in an oxidized state. The electrons
are collected by the counter electrode and used to reduce the electrolyte. This charged
electrolyte then reduces the positively charged photo-electrode, allowing the process
to begin again. To improve the efficiency of this process, we explore the use of Bismuth
Sulfide and Titanium Oxide composite as photo-electrode material by testing it in
varying ratios and studying their affects on the energy production of the cell.
Context Aware Heterogeneous Clustering Based Demand Management for Sustainable Integration
of Green Energy Resources
Arun Karrthick Manoharan
In the past decade there has been a growing interest among the entities (System operators,
End customers etc.,) in the electric power grid, towards less carbon-emitting options
such as solar and wind generation and electric vehicles (EV). Although these are eco-friendly
solutions, they also create challenges to the operations of the existing power grid
as their penetration increases. To make this transition sustainable and to unlock
their true potential benefits, existing literature suggests a coordinated management
of EVs considering the other resources such as solar. Specifically, an aggregator-based
decentralized approach is considered for implementation of such EV management schemes
on large systems with several resources. In our work we developed a context-aware
heterogeneous clustering algorithm for forming aggregators (creating groups of manageable
EVs) that improves the viability of real-time implementation and management efficiency
while preserving the EV customers’ privacy. The proposed algorithm was implemented
on a test system and the results show the effectiveness of the proposed methods in
reducing CO2 emission.